

Mathematics

Advanced GCE A2 7890 - 2

Advanced Subsidiary GCE AS 3890 - 2

Mark Schemes for the Units

January 2009

3890-2/7890-2/MS/R/09

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, GCSEs, OCR Nationals, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2009

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:0870 770 6622Facsimile:01223 552610E-mail:publications@ocr.org.uk

CONTENTS

Advanced GCE Mathematics (7890) Advanced GCE Pure Mathematics (7891) Advanced GCE Further Mathematics (7892)

Advanced Subsidiary GCE Mathematics (3890) Advanced Subsidiary GCE Pure Mathematics (3891) Advanced Subsidiary GCE Further Mathematics (3892)

MARK SCHEMES FOR THE UNITS

Unit/Content	Page
4721 Core Mathematics 1	1
4722 Core Mathematics 2	5
4723 Core Mathematics 3	8
4724 Core Mathematics 4	11
4725 Further Pure Mathematics 1	15
4726 Further Pure Mathematics 2	18
4727 Further Pure Mathematics 3	21
4728 Mechanics 1	25
4729 Mechanics 2	28
4730 Mechanics 3	30
4732 Probability & Statistics 1	34
4733 Probability & Statistics 2	38
4734 Probability & Statistics 3	40
4736 Decision Mathematics 1	43
4737 Decision Mathematics 2	47
Grade Thresholds	53

January 20. Mains Cloud. com

4721 Core Mathematics 1

	_		
1	$3\sqrt{5} + \frac{20\sqrt{5}}{5}$ $= 7\sqrt{5}$	B1	$3\sqrt{5}$ soi
	$=7\sqrt{5}$	M1	Attempt to rationalise $\frac{20}{\sqrt{5}}$
		A1 3 3	cao
2 (i)	x^2	B1 1	cao
(ii)	$\frac{3y^4 \times 1000y^3}{2y^5} = 1500y^2$		
	$2y^{5}$	B1	1000y ³ soi
	$=1500y^{2}$	B1 B1 3	1500 y ²
		4	5
3	Let $y = x^{\frac{1}{3}}$	*M1	Attempt a substitution to obtain a quadratic or
	$3y^2 + y - 2 = 0$		factorise with $\sqrt[3]{x}$ in each bracket
	(3y-2)(y+1) = 0	DM1	Correct method to find roots
	$y = \frac{2}{3}, y = -1$	A1	Both values correct
	$x = \left(\frac{2}{3}\right)^3, x = (-1)^3$	DM1	Attempt cube of at least one value
	$x = \frac{8}{27}, x = -1$	A1 ft 5	Both answers correctly followed through
			SR If M1* not awarded, B1 $x = -1$ from T & I
4 (i)		B1	Excellent curve in one quadrant or roughly correct curves in correct 2 quadrants
		B1 2	Completely correct
(ii)	$y = \frac{1}{\left(x+3\right)^2}$	M1	$\frac{1}{\left(x\pm3\right)^2}$
		A1 2	$y = \frac{1}{\left(x+3\right)^2}$
(iii)	(1, 4)	B1 B1 2	Correct x coordinate Correct y coordinate
		6	

				neme January 20 kx^{-6} Fully correct answer	12
4721	Ν	Mark S	Sch	eme January 20. 76	ths clo
5 (i)	$\frac{dy}{dx} = -50x^{-6}$	M1		kx^{-6}	Uld.Co
	dx = 20x	A1	2	Fully correct answer	OM
			ļ		
(ii)	$y = x^{\frac{1}{4}}$	B1	ļ	$4\sqrt{r} = r^{\frac{1}{4}}$ soi	
	$\int \frac{dy}{dx} = \frac{1}{4}x^{-\frac{3}{4}}$	B1	ļ	$ \frac{4\sqrt{x} = x^{\frac{1}{4}}}{\frac{1}{4}x^{c}} $ soi	
	$\frac{dy}{dr} = \frac{1}{4}x^{-4}$	B1	3	$\left \begin{array}{c} -x^{2} \\ 4 \end{array} \right $	
	un i			$kx^{-\frac{3}{4}}$	
			ļ		
(iii)	$y = (x^2 + 3x)(1 - 5x)$	M1	ļ	Attempt to multiply out fully	
	$=3x-14x^2-5x^3$	A1	ļ	Correct expression (may have 4 terms)	
	$\frac{dy}{dt} = 3 - 28x - 15x^2$		ļ		
	$\frac{-1}{dx} = 5 - 2\alpha - 13x$	M1	ļ	Two terms correctly differentiated from their	
		A1	4	expanded expression Completely correct (3 terms)	
			9		
	-(2,1) 0	B1		p = 5	-
6(i)	$5(x^{2} + 4x) - 8$ = 5[(x + 2) ² - 4] - 8		ļ	$\begin{cases} p-3\\ (x+2)^2 \text{ seen or } q=2 \end{cases}$	
		B1	ļ		
	$=5(x+2)^2 - 20 - 8$	M1	ļ	$-8-5q^2 \text{ or } -\frac{8}{5}-q^2$	
	$=5(x+2)^2-28$	A1	4	r = -28	
(ii)	x = -2	 			
	$20^{2} - 4 \times 5 \times -8$	B1 ft	. 1		
(iii)	$20^{-}-4 \times 5 \times -8$ = 560	M1		Uses $b^2 - 4ac$	
(iv)		A1	2	560	
()	2 real roots	B1	1	2 real roots	
			8		
7(i)	30 + 4k - 10 = 0	M1	_	Attempt to substitute $x = 10$ into equation of line	
	$\therefore k = -5$	A1	2		
(ii)			ļ		
	$\sqrt{(10-2)^2 + (-5-1)^2}$	M1	ļ	Correct method to find line length using Pythagoras' theorem	
	$=\sqrt{64+36}$				
	=10	A1	2	cao, dependent on correct value of k in (i)	
(iii)		B1	ļ		
	Centre (6, -2) Radius 5	B1	2		
(iv)			-		
	Midpoint of $AB = (6, -2)$	B1	ļ	One correct statement of verification	
	Length of $AB = 2 x$ radius	B1	2	Complete verification	
	Both A and B lie on circumference		8		
	Centre lies on line $3x + 4y - 10 = 0$				

4721	N	lark Sch	eme January 20 January 20 Correct method to solve quadratic
8 (i)	$x = \frac{8 \pm \sqrt{(-8)^2 - (4 \times -1 \times 5)}}{-2}$ = $\frac{8 \pm \sqrt{84}}{-2}$ = $-4 - \sqrt{21}$ or = $-4 + \sqrt{21}$	M1 A1 A1 3	Correct method to solve quadratic $x = \frac{8 \pm \sqrt{84}}{-2}$ Both roots correct and simplified
(ii)	$x \le -4 - \sqrt{21}$, $x \ge -4 + \sqrt{21}$	M1 A1 2	Identifying $x \le$ their lower root, $x \ge$ their higher root $x \le -4 - \sqrt{21}$, $x \ge -4 + \sqrt{21}$ (not wrapped, no 'and')
(iii)		B1 B1 B1 B1 B1 5 10	Roughly correct negative cubic with max and min (-4, 0) (0, 20) Cubic with 3 distinct real roots Completely correct graph
9	$\frac{dy}{dx} = 3x^2 + 2px$ When $x = 4$, $\frac{dy}{dx} = 0$ $\therefore 3 \times 4^2 + 8p = 0$ $8p = -48$ $p = -6$ $\frac{d^2 y}{dx^2} = 6x - 12$ When $x = 4$, $6x - 12 > 0$ Minimum point	M1 A1 M1 A1 A1 A1 A1 7	Attempt to differentiate Correct expression cao Setting their $\frac{dy}{dx} = 0$ Substitution of $x = 4$ into their $\frac{dy}{dx} = 0$ to evaluate p Looks at sign of $\frac{d^2 y}{dx^2}$, derived correctly from their $\frac{dy}{dx}$, or other correct method Minimum point CWO

4721	.	Mark Sche	me January 20. The second seco
10(i)	$\frac{dy}{dx} = 2x + 1$	M1	Attempt to differentiate y
	= 5	A1 2	cao
(ii)	Gradient of normal = $-\frac{1}{5}$	B1 ft	ft from a non-zero numerical value in (i)
	When $x = 2, y = 6$	B1	May be embedded in equation of line
	$y - 6 = -\frac{1}{5}(x - 2)$ x + 5y - 32 = 0	M1	Equation of line, any non-zero gradient, their <i>y</i> coordinate
	x + 5y - 32 = 0	A1 4	Correct equation in correct form
(iii)	$x^{2} + x = kx - 4$ x ² + (1-k)x + 4 = 0	*M1	Equating $y_1 = y_2$
	One solution $\Rightarrow b^2 - 4ac = 0$	DM1	Statement that discriminant = 0
	$(1-k)^2 - 4 \times 1 \times 4 = 0$	DM1	Attempt (involving k) to use a, b, c from their equation
	$(1-k)^2 = 16$ $1-k = \pm 4$	A1	Correct equation (may be unsimplified)
	1 - k = 14 k = -3 or 5	DM1	Correct method to find k , dep on 1 st 3Ms
		A1 6	Both values correct
		12	

4722 Core Mathematics 2

1 (i)	$\int \left(x^3 + 8x - 5\right) dx = \frac{1}{4}x^4 + 4x^2 - 5x + c$	M1		Attempt integration – increase in power for at least 2 term
	J``´´	A1		Obtain at least 2 correct terms
		A1	3	Obtain $\frac{1}{4}x^4 + 4x^2 - 5x + c$ (and no integral sign or dx)
(ii)	$\int 12x^{\frac{1}{2}} dx = 8x^{\frac{3}{2}} + c$	B1		State or imply $\sqrt{x} = x^{\frac{1}{2}}$
		M1		Obtain $kx^{\frac{3}{2}}$
		A1	3	Obtain $8x^{\frac{3}{2}} + c$ (and no integral sign or dx)
			6	(only penalise lack of $+ c$, or integral sign or dx once)
2 (i)	$140^{\circ} = 140 \times \frac{\pi}{180}$	M1		Attempt to convert 140° to radians
	$=\frac{7}{9}\pi$	A1	2	Obtain $\frac{7}{9}\pi$, or exact equiv
(ii)	arc $AB = 7 \times \frac{7}{9} \pi$	M1		Attempt arc length using $r\theta$ or equiv method
	= 17.1	A1√		Obtain 17.1, $\frac{49}{9}\pi$ or unsimplified equiv
c	chord $AB = 2 \times 7 \sin \frac{7}{18} \pi = 13.2$	M1		Attempt chord using trig. or cosine or sine rules
	hence perimeter = 30.3 cm	A1	4	Obtain 30.3, or answer that rounds to this
			6	
	$u_1 = 23^{1/3}$	B1		State $u_1 = 23^{1}/_{3}$
1	$u_2 = 22^2 /_3$, $u_3 = 22$	B1	2	State $u_2 = 22^2 /_3$ and $u_3 = 22$
(ii) 1	$24 - \frac{2k}{3} = 0$	M1		Equate u_k to 0
	<i>k</i> = 36	A1	2	Obtain 36
(iii)	$S_{20} = \frac{20}{2} \left(2 \times 23 \frac{1}{3} + 19 \times \frac{-2}{3} \right)$	M1		Attempt sum of AP with $n = 20$
	= 340	A1	2	Correct unsimplified S_{20}
		A1	3	Obtain 340
			7	
4 $\int_{-2}^{2} (x^4)$	$(x^{2} + 3) dx = \left[\frac{1}{5}x^{5} + 3x\right]_{-2}^{2}$	M1		Attempt integration – increase of power for at least 1 term
		A1		Obtain correct $\frac{1}{5}x^5 + 3x$
	$= \left(\frac{32}{5} + 6\right) - \left(\frac{-32}{5} - 6\right)$	M1		Use limits (any two of -2 , 0, 2), correct order/subtraction
	$= 24\frac{4}{5}$	A1		Obtain $24\frac{4}{5}$
	of rectangle = 19×4	B1		State or imply correct area of rectangle
hence	e shaded area = $76 - 24 \frac{4}{5}$	M1	-	Attempt correct method for shaded area
OR	$=51\frac{1}{5}$	A1	7	Obtain $51\frac{1}{5}$ aef such as 51.2, $\frac{256}{5}$
	$= 19 - (x^4 + 3)$	M1		Attempt subtraction, either order
Area =	$-16 x^4$	A1		Obtain $16 - x^4$ (not from $x^4 + 3 = 19$)
:	$= 16 - x^4$			
:	$-x^{4} dx = \left[6x - \frac{1}{5}x^{5} \right]_{2}^{2}$	M1		Attempt integration

47	22 Mark S	cheme		Janua Jarua
	$=(32-\frac{32}{5})-(-32-\frac{-32}{5})$	M1		$\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & $
	$=51\frac{1}{5}$	A1		Obtain $\pm 51\frac{1}{5}$
	2	A1		Obtain $51\frac{1}{5}$ only, no wrong working
			7	
5 (i)	$\frac{TA}{\sin 107} = \frac{50}{\sin 3}$	M1		Attempt use of correct sine rule to find <i>TA</i> , or equiv
	TA = 914 m	A1	2	Obtain 914, or better
(ii)	$TC = \sqrt{914^2 + 150^2 - 2 \times 914 \times 150 \times \cos 70}$	M1		Attempt use of correct cosine rule, or equiv. to find TC
(11)	$IC = \sqrt{914} + 150 - 2 \times 914 \times 150 \times \cos 70$	MI A1√		Attempt use of correct cosine rule, or equiv, to find <i>TC</i> Correct unsimplified expression for <i>TC</i> , following their (i)
	= 874 m	Al	3	Obtain 874, or better
(iii)	dist from $A = 914 \text{ x} \cos 70 = 313 \text{ m}$	M1		Attempt to locate point of closest approach
OR	beyond C , hence 874 m is shortest dist	A1	2	Convincing argument that the point is beyond <i>C</i> , or obtain 859, or better
UI	perp dist = $914 \times \sin 70 = 859$ m			SR B1 for 874 stated with no method shown
			7	
5 (i)	$S_{\infty} = \frac{20}{1-0.9}$	M1		Attempt use of $S_{\infty} = \frac{a}{1-r}$
	= 200	A1	2	Obtain 200
(ii)	$S_{30} = \frac{20(1 - 0.9^{30})}{1 - 0.9}$	 M1		Attempt use of correct sum formula for a GP, with $n = 30$
	1 - 0.9 = 192	A1	2	Obtain 192, or better
(iii)	$20 \times 0.9^{p-1} < 0.4$	B1		Correct $20 \times 0.9^{p-1}$ seen or implied
	$\begin{array}{l} 0.9^{p-1} < 0.02\\ (p-1)\log 0.9 < \log 0.02 \end{array}$	M1		Link to 0.4, rearrange to $0.9^k = c$ (or >, <), introduce
	$p-1 > \frac{\log 0.02}{\log 0.9}$			logarithms, and drop power, or equiv correct method
	p > 38.1 hence $p = 39$	M1 A1	4	Correct method for solving their (in)equation State 39 (not inequality), no wrong working seen
			8	
7 (i)	$6k^2a^2 = 24$	M1*		Obtain at least two of 6, k^2 , a^2
	$k^2 a^2 = 4$	M1de	p*	Equate $6k^m a^n$ to 24
	ak = 2 A.G.	A1	3	Show $ak = 2$ convincingly – no errors allowed
(ii)	$4k^3a = 128$	B1		State or imply coeff of x is $4k^3a$
	$4k^{3}\left(\frac{2}{k}\right) = 128$	M1		Equate to 128 and attempt to eliminate <i>a</i> or <i>k</i>
	$k^2 = 16$ $k = 4$, $a = \frac{1}{2}$	A1 A1	4	Obtain $k = 4$ Obtain $a = \frac{1}{2}$
	$n - \frac{1}{2}$	<i>m</i>	-	SR B1 for $k = \pm 4$, $a = \pm \frac{1}{2}$
(iii)	$4 \times 4 \times \left(\frac{1}{2}\right)^3 = 2$	 M1		Attempt $4 \times k \times a^3$, following their <i>a</i> and <i>k</i> (allow if still ir
()				terms of a, k)
		A1	2	Obtain 2 (allow $2x^3$)

4722

4722	Mark Scheme	Use $\log a^b = b \log a$ correctly at least once
8 (a)(i) $\log_a xy = p + q$	B1 1	State $p + q$ cwo
(ii) $\log_a \left(\frac{a^2 x^3}{y}\right) = 2 + 3p - q$	M1	Use $\log a^b = b \log a$ correctly at least once
	M1	Use $\log \frac{a}{b} = \log a - \log b$ correctly
	A1 3	3 Obtain $2 + 3p - q$
(b)(i) $\log_{10} \frac{x^2 - 10}{x}$	B1 1	State $\log_{10} \frac{x^2 - 10}{x}$ (with or without base 10)
(ii) $\log_{10} \frac{x^2 - 10}{x} = \log_{10} 9$	B1	State or imply that $2\log_{10} 3 = \log_{10} 3^2$
$\frac{x^2 - 10}{x} = 9$	M1	Attempt correct method to remove logs
$x^2 - 9x - 10 = 0$	A1	Obtain correct $x^2 - 9x - 10 = 0$ aef, no fractions
(x-10)(x+1)=0	M1	Attempt to solve three term quadratic
x = 10	A1 5	5 Obtain $x = 10$ only
	10]
9 (i) $f(1) = 1 - 1 - 3 + 3 = 0$ A.G.	B1	Confirm $f(1) = 0$, or division with no remainder shown, or
$f(x) = (x-1)(x^2-3)$	M1	matching coeffs with $R = 0$ Attempt complete division by $(x - 1)$, or equiv
	Al	Obtain $x^2 + k$
2	A1	Obtain completely correct quotient (allow $x^2 + 0x - 3$)
$x^2 = 3$	M1	Attempt to solve $x^2 = 3$
$x = \pm \sqrt{3}$	A1 6	5 Obtain $x = \pm \sqrt{3}$ only
(ii) $\tan x = 1, \sqrt{3}, -\sqrt{3}$	B1√	State or imply $\tan x = 1$ or $\tan x = $ at least one of their roots from (i)
$\tan x = \sqrt{3} \Longrightarrow x = \frac{\pi}{3}, \frac{4\pi}{3}$	M1	Attempt to solve $\tan x = k$ at least once
$\tan x = -\sqrt{3} \Longrightarrow x = \frac{2\pi}{3}, \frac{5\pi}{3}$	A1	Obtain at least 2 of $\pi/3$, $2\pi/3$, $4\pi/3$, $5\pi/3$ (allow degs/decimals)
$\tan x = 1 \implies x = \frac{\pi}{4}, \frac{5\pi}{4}$	A1	Obtain all 4 of $\frac{\pi}{3}$, $\frac{2\pi}{3}$, $\frac{4\pi}{3}$, $\frac{5\pi}{3}$ (exact radians only)
	B1	Obtain $\frac{\pi}{4}$ (allow degs / decimals)
	B1 6	6 Obtain $\frac{5\pi}{4}$ (exact radians only) SR answer only is B1 per root, max of B4 if degs / decimals
	12]

January 20. Mains Cloud. com

4723 Core Mathematics 3

1 (i) (ii)	Obtain integral of form ke^{-2x} Obtain $-4e^{-2x}$ Obtain integral of form $k(4x+5)^7$ Obtain $\frac{1}{28}(4x+5)^7$	M1 A1 M1 A1		any constant <i>k</i> different from 8 or (unsimplified) equiv any constant <i>k</i> in simplified form
	Include + c at least once	B1	5	in either part
2 (i)	Form expression involving attempts at y values and addition Obtain $k(\ln 4 + 4 \ln 6 + 2 \ln 8 + 4 \ln 10 + \ln 12)$ Use value of k as $\frac{1}{3} \times 2$ Obtain 16.27	M1 A1 A1 A1	4	with coeffs 1, 4 and 2 present at least once any constant k or unsimplified equiv or 16.3 or greater accuracy (16.27164)
(ii)	State 162.7 or 163	B1√	1 5	following their answer to (i), maybe rounded
3 (i)	Attempt use of identity for $\tan^2 \theta$ Replace $\frac{1}{\cos \theta}$ by $\sec \theta$	M1 B1		using $\pm \sec^2 \theta \pm 1$; or equiv
	Obtain $2(\sec^2 \theta - 1) - \sec \theta$	A1	3	or equiv
(ii)	Attempt soln of quadratic in $\sec \theta$ or $\cos \theta$ Relate $\sec \theta$ to $\cos \theta$ and attempt at least	M1		as far as factorisation or substitution in correct formula
	one value of θ Obtain 60°, 131.8°, 228.2°, 300°	M1 A1 A1	4	may be implied allow 132 or greater accuracy allow 132, 228 or greater accuracy; and no others between 0° and 360°
4 (i)	Obtain derivative of form $kx(4x^2 + 1)^4$ Obtain $40x(4x^2 + 1)^4$ State $x = 0$	M1 A1 A1√	3	any constant k or (unsimplified) equiv and no other; following their derivative of form $kx(4x^2 + 1)^4$
 (ii)	Attempt use of quotient rule	M1		or equiv
	Obtain $\frac{2x \ln x - x^2 \cdot \frac{1}{x}}{(\ln x)^2}$	A1		or equiv
	Equate to zero and attempt solution Obtain $e^{\frac{1}{2}}$	M1 A1	4	as far as solution involving e or exact equiv; and no other; allow from ± (correct numerator of derivative)

January	20
---------	----

					ų
4723	Ма	ark S	ch	eme	Januar
5 (i)	State 40 Attempt value of k using 21 and 80 Obtain $40e^{21k} = 80$ and hence 0.033 Attempt value of M for $t = 63$ Obtain 320	B1 M1 A1 M1 A1	5	or equiv or equiv such as $\frac{1}{21} \ln 2$ using established formula or using exponential property or value rounding to this	Januar
(ii)	Differentiate to obtain $ce^{0.033t}$ or $40ke^{kt}$ Obtain $40 \times 0.033e^{0.033t}$ Obtain 2.64	M1 A1√ A1		any constant <i>c</i> different from 40 following their value of <i>k</i> allow 2.6 or 2.64 ± 0.01 or greater accuracy (2.64056)	
6 (i)	Attempt correct process for finding inverse Obtain $2x^3 - 4$ State $1\sqrt[3]{6}$ B1 3	M1 A1		maybe in terms of y so far or equiv; in terms of x now	
(ii)	State reflection in $y = x$ Refer to intersection of $y = x$ and $y = f(x)$ and hence confirm $x = \sqrt[3]{\frac{1}{2}x + 2}$	B1 B1		or clear equiv AG; or equiv	
(iii)	Obtain correct first iterate Show correct process for iteration Obtain at least 3 correct iterates in all Obtain 1.39 $\begin{bmatrix} 0 \rightarrow 1.259921 \rightarrow 1.380330 \rightarrow 1.3\\ 1 \rightarrow 1.357209 \rightarrow 1.388789 \rightarrow 1.3\\ 1.26 \rightarrow 1.380337 \rightarrow 1.390784 \rightarrow 1.5 \rightarrow 1.401020 \rightarrow 1.392564 \rightarrow 1\\ 2 \rightarrow 1.442250 \rightarrow 1.396099 \rightarrow 1.3 \end{bmatrix}$	90784 91512 1.391 .3918	$\begin{array}{c} 4 \\ 4 \\ 2 \\ 684 \\ 37 \end{array}$	allowing recovery after error following at least 3 steps; answer rec to exactly 2 d.p. > 1.391684 + 1.391747 + \rightarrow 1.391761 \rightarrow 1.391775	
7 (i)	Refer to stretch and translation State stretch, factor $\frac{1}{k}$, in <i>x</i> direction State translation in negative <i>y</i> direction by <i>a</i> [SC: If M0 but one transformation complete				ogy
(ii)	Show attempt to reflect negative part in <i>x</i> -axis Show correct sketch	M1 A1		ignoring curvature with correct curvature, no pronounce 'rounding' at x-axis and no obvious maximum point	
(iii)	Attempt method with $x = 0$ to find value of Obtain $a = 14$ Attempt to solve for k Obtain $k = 3$	A1 M1 A1	49	other than (or in addition to) value and nothing else using any numerical <i>a</i> with sound pro	

					Munu My Martin nuary 20. Rainscloud
4723	M	/lark S	Sch	eme Ja	nuary 20 naths
8 (i)	Attempt to express x or x^2 in terms of y	M1			5/040
	Obtain $x^2 = \frac{1296}{(y+3)^4}$	A1		or (unsimplified) equiv	
	Obtain integral of form $k(y+3)^{-3}$	M1		any constant k	
	Obtain $-432\pi(y+3)^{-3}$ or $-432(y+3)^{-3}$	A1		or (unsimplified) equiv	
	Attempt evaluation using limits 0 and p	M1		for expression of form $k(y+3)^{-n}$ obtain from integration attempt; subtraction correct way round	ned
	Confirm $16\pi (1 - \frac{27}{(p+3)^3})$	A1	6	AG; necessary detail required, includir	ıg
	$(p+3)^{2}$			appearance of π prior to final line	
(ii)	State or obtain $\frac{\mathrm{d}V}{\mathrm{d}p} = 1296\pi(p+3)^{-4}$	B1		or equiv; perhaps involving y	
	Multiply $\frac{dp}{dt}$ and attempt at $\frac{dV}{dp}$	*M	1	algebraic or numerical	
	Substitute $p = 9$ and attempt evaluation	M1		dep *M	
	Obtain $\frac{1}{4}\pi$ or 0.785	A1	4 10	or greater accuracy	
9 (i)	State $\cos 2\theta \cos \theta - \sin 2\theta \sin \theta$	B1			
	Use at least one of $\cos 2\theta = 2\cos^2 \theta - 1$ and $\sin 2\theta = 2\sin \theta \cos \theta$	D1			
	Attempt to express in terms of $\cos \theta$ only	B1 M1		using correct identities for	
				$\cos 2\theta$, $\sin 2\theta$ and $\sin^2 \theta$	
	Obtain $4\cos^3\theta - 3\cos\theta$	A1	4	AG; necessary detail required	
(ii)	<u>Either</u> : State or imply $\cos 6\theta = 2\cos^2 3\theta$ Use expression for $\cos 3\theta$ and	-1 B1			
	attempt expansion	M1		for expression of form $\pm 2\cos^2 3\theta \pm 1$	
	Obtain $32c^6 - 48c^4 + 18c^2 - 1$		3	AG; necessary detail required	
	<u>Or</u> : State $\cos 6\theta = 4\cos^3 2\theta - 3\cos 2\theta$ Express $\cos 2\theta$ in terms of $\cos \theta$			maybe implied	
	and attempt expansion	M1		for expression of form $\pm 2\cos^2\theta \pm 1$	
	Obtain $32c^6 - 48c^4 + 18c^2 - 1$	A1	(3)	AG; necessary detail required	
(iii)	Substitute for $\cos \Theta$	*M1		with simplification attempted	
	Obtain $32c^6 - 48c^4 = 0$ Attempt solution for <i>c</i> of equation	A1 M1		or equiv	
	Attempt solution for <i>c</i> of equation Obtain $c^2 = \frac{3}{2}$ and observe no solutions	M1 A1		dep *M or equiv; correct work only	
	Obtain $c = 0$, give at least three specific		-	- · ·	
	angles and conclude odd multiples of 90) A1	5	AG; or equiv; necessary detail require correct work only	d;
			12	•	

4724 Core Mathematics 4

1	Attempt to factorise numerator and denominator		M1	$\frac{A}{f(x)} + \frac{B}{g(x)}; fg = 6x^2 - 24x$	
	Any (part) factorisation of both	num and denom	A1	Corres identity/cover-up	
	Final answer = $-\frac{5}{6x}$, $\frac{-5}{6x}$, $\frac{5}{-6x}$	$-\frac{5}{6}x^{-1}$ Not $-\frac{5}{6}x^{-1}$	A1		
			3		
2	Use parts with $u = x, dv = \sec^2 x$.	x	M1	result $f(x) + / - \int g(x) dx$	
	Obtain correct result $x \tan x - \int$	$\tan x \mathrm{d}x$	A1		
	$\int \tan x \mathrm{d}x = k \ln \sec x \text{ or } k \ln \cos x$	s x, where $k = 1$ or -1	B1	or $k \ln \sec x $ or $k \ln \cos x $	
	Final answer = $x \tan x - \ln \sec x $	$+c \text{ or } x \tan x + \ln \left \cos x \right +$	<i>c</i> A1		
			4		
3 (i)	$1 + \frac{1}{2} \cdot 2x + \frac{\frac{1}{2} \cdot -\frac{1}{2}}{2} (4x^2 \text{ or } 2x^2)$	$+\frac{\frac{1}{2}\cdot-\frac{1}{2}\cdot-\frac{3}{2}}{6}\left(8x^{3} \text{ or } 2x^{3}\right)$	M1		
	= 1 + x	0	B1	B1	
	$\dots -\frac{1}{2}x^2 + \frac{1}{2}x^3$ (AE fract	coeffs)	A1 (3	3) For both terms	
 (ii)	$(1+x)^{-3} = 1 - 3x + 6x^2 - 10x^3$		B1 c	or $(1+x)^3 = 1+3x+3x^2+x^3$	
(ii)	$(1+x)^{-3} = 1-3x+6x^2-10x^3$ Either attempt at their (i) multip	lied by $(1+x)^{-3}$		or $(1+x)^3 = 1+3x+3x^2+x^3$ or (i) long div by $(1+x)^3$	
(ii)		lied by $(1+x)^{-3}$ $\sqrt{1+(a-3)x}$	M1 (
 (ii)	Either attempt at their (i) multip		M1 (or (i) long div by $(1+x)^3$	
 (ii)	Either attempt at their (i) multip $1-2x \dots$	$\sqrt{1+(a-3)x}$ $\sqrt{(-3a+b+6)x^2}$	M1 o A1 f A1	or (i) long div by $(1+x)^3$	
 (ii)	Either attempt at their (i) multip $1-2x \dots$ $\dots + \frac{5}{2}x^2 \dots$	$\sqrt{1+(a-3)x}$ $\sqrt{(-3a+b+6)x^2}$	M1 o A1 f A1	or (i) long div by $(1+x)^3$ f.t. (i) = $1 + ax + bx^2 + cx^3$	
	Either attempt at their (i) multip $1-2x \dots$ $\dots + \frac{5}{2}x^2 \dots$ $\dots -2x^3$	$\sqrt{1+(a-3)x}$ $\sqrt{(-3a+b+6)x^2}$	M1 (or (i) long div by $(1+x)^3$ f.t. (i) = $1 + ax + bx^2 + cx^3$ 5) (AE fract.coeffs)	
	Either attempt at their (i) multip $1-2x \dots$ $\dots + \frac{5}{2}x^2 \dots$	$\sqrt{1+(a-3)x}$ $\sqrt{(-3a+b+6)x^2}$	M1 o A1 f A1	or (i) long div by $(1+x)^3$ f.t. (i) = $1 + ax + bx^2 + cx^3$ 5) (AE fract.coeffs)	

1724	Mark Scheme		Minimum of $1 + \sin^2 x$
Ļ	Attempt to expand $(1 + \sin x)^2$ and integrate it	*M1	Minimum of $1 + \sin^2 x$
	Attempt to change $\sin^2 x$ into $f(\cos 2x)$	M1	
	Use $\sin^2 x = \frac{1}{2} \left(1 - \cos 2x \right)$	A1	dep M1 + M1
	Use $\int \cos 2x dx = \frac{1}{2} \sin 2x$	A1	dep M1 + M1
	Use limits correctly on an attempt at integration dep	* M1	Tolerate g $(\frac{1}{4}\pi) - 0$
	$\frac{3}{8}\pi - \sqrt{2} + \frac{7}{4}$ AE(3-term)F	A1	WW $1.51 \rightarrow M1 A0$
		6	
5 (i)	Attempt to connect du and dx, find $\frac{du}{dx}$ or $\frac{dx}{du}$	M1	But not e.g. $du = dx$
	Any correct relationship, however used, such as $dx = 2u dx$	u Al	or $\frac{\mathrm{d}u}{\mathrm{d}x} = \frac{1}{2} x^{-1/2}$
	Subst with clear reduction (≥ 1 inter step) to AG	A1 (3) WWW
(ii)	Attempt partial fractions	M1	
	$\frac{2}{u} - \frac{2}{1+u}$	A1	
	$\sqrt{A \ln u + B \ln (1+u)}$	√ A 1	Based on $\frac{A}{u} + \frac{B}{1+u}$
	Attempt integ, change limits & use on $f(u)$	M1	or re-subst & use 1 & 9
	$\ln \frac{9}{4}$ AEexactF (e.g. 2 ln 3 –2 ln 4 + 2 ln 2)	A1 (5) Not involving ln 1
		8	

				Ja (2) $(-5,0)$ need not be quoted
47	24	Mark Scheme		Jai
6	(i)	Solve $0 = t - 3$ & subst into $x = t^2 - 6t + 4$	M1	
		Obtain $x = -5$	A1 ((2) $(-5,0)$ need not be quoted
		N.B. If (ii) completed first, subst $y = 0$ into their cartesian	eqn (M1) & find x (no f.t.) (A1)
	(ii)	Attempt to eliminate <i>t</i>	M1	
		Simplify to $x = y^2 - 5$ ISW	A1 ((2)
	(iii)	Attempt to find $\frac{dy}{dx}$ or $\frac{dx}{dy}$ from cartes or para form	M1	Award anywhere in Que
		Obtain $\frac{dy}{dx} = \frac{1}{2t-6}$ or $\frac{1}{2y}$ or $(-)\frac{1}{2}(x+5)^{-\frac{1}{2}}$	A1	
		If $t = 2$, $x = -4$ and $y = -1$	B1	Awarded anywhere in (iii)
		Using their num (x, y) & their num $\frac{dy}{dx}$, find tgt eqn	M1	
		x+2y+6=0 AEF(without fractions) ISW	A1 ((5)
			9	
7	(i)	Attempt direction vector between the 2 given points	M1	
		State eqn of line using format (\mathbf{r}) = (either end) + s (dir vec)	M1	<i>'s'</i> can be <i>'t'</i>
		Produce $2/3$ eqns containing t and s	M1	2 different parameters
		Solve giving $t = 3$, $s = -2$ or $2 \text{ or } -1 \text{ or } 1$	A1	
		Show consistency	B1	
		Point of intersection = $(5,9,-1)$	A1 ((6)
	(ii)	Correct method for scalar product of 'any' 2 vectors	M1	Vectors from this question
		Correct method for magnitude of 'any' vector	M1	Vector from this question
		Use $\cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{ \mathbf{a} \mathbf{b} }$ for the correct 2 vectors $\begin{pmatrix} 1\\4\\-2 \end{pmatrix} \& \begin{pmatrix} 2\\-1\\3 \end{pmatrix}$	M1	Vects may be mults of dvs
		62.2 (62.188157) 1.09 (1.0853881)	A1 ((4)
			10	

8	(i)	$\frac{\mathrm{d}}{\mathrm{d}x}\left(y^3\right) = 3y^2 \frac{\mathrm{d}y}{\mathrm{d}x}$	B1	
		Consider $\frac{d}{dx}(xy)$ as a product	M1	
		$= x \frac{\mathrm{d}y}{\mathrm{d}x} + y$	A1	Tolerate omission of '6'
		$\frac{dy}{dx} = \frac{6y - 3x^2}{3y^2 - 6x}$ ISW AEF	A1	(4)
	(ii)	$x^3 = 2^4$ or 16 and $y^3 = 2^5$ or 32	*B1	
		Satisfactory conclusion	dep* B1	AG
		Substitute $\left(2^{\frac{4}{3}}, 2^{\frac{5}{3}}\right)$ into their $\frac{dy}{dx}$	M1	or the numerator of $\frac{dy}{dx}$
		Show or use calc to demo that num = 0, ignore	denom AG A1	(4)
	(iii)	Substitute (a, a) into eqn of curve	M1	& attempt to state ' $a = \dots$ '
		$a = 3$ only with clear ref to $a \neq 0$	A1	
		Substitute (3,3) or (their <i>a</i> , their <i>a</i>) into their $\frac{d}{dt}$	$\frac{y}{x}$ M1	
		-1 only WWW	A1	(4) from (their <i>a</i> , their <i>a</i>)
9	(i)	-1 only WWW $\frac{d\theta}{dt} = \dots$		(4) from (their <i>a</i> ,their <i>a</i>)
9	(i)		12 B1	 (4) from (their <i>a</i>, their <i>a</i>) (2) The 2 @ 'B1' are indep
9		$\frac{\mathrm{d}\theta}{\mathrm{d}t} = \dots$	12 B1 B1	
9		$\frac{\mathrm{d}\theta}{\mathrm{d}t} = \dots$ $k(160 - \theta)$	12 B1 B1	(2) The 2 @ 'B1' are indep
9		$\frac{d\theta}{dt} = \dots$ $k(160 - \theta)$ Separate variables with $(160 - \theta)$ in denom; or i	12 B1 B1 nvert *M1	(2) The 2 @ 'B1' are indep $\int \frac{1}{160 - \theta} d\theta = \int k, \frac{1}{k}, 1 dt$
9		$\frac{d\theta}{dt} = \dots$ $k(160 - \theta)$ Separate variables with $(160 - \theta)$ in denom; or i Indication that LHS = ln f(θ)	12 B1 B1 Nvert *M1 A1 A1	(2) The 2 @ 'B1' are indep $\int \frac{1}{160 - \theta} d\theta = \int k, \frac{1}{k}, 1 dt$
9		$\frac{d\theta}{dt} = \dots$ $k(160 - \theta)$ Separate variables with $(160 - \theta)$ in denom; or i Indication that LHS = $\ln f(\theta)$ RHS = kt or $\frac{1}{k}t$ or t (+ c)	12 B1 B1 *M1 A1 A1 c dep*M1	(2) The 2 @ 'B1' are indep $\int \frac{1}{160 - \theta} d\theta = \int k, \frac{1}{k}, 1 dt$
9		$\frac{d\theta}{dt} = \dots$ $k(160 - \theta)$ Separate variables with $(160 - \theta)$ in denom; or i Indication that LHS = $\ln f(\theta)$ RHS = kt or $\frac{1}{k}t$ or t (+ c) Subst. $t = 0, \theta = 20$ into equation containing 'c'	12 B1 B1 *M1 A1 A1 c dep*M1	(2) The 2 @ 'B1' are indep $\int \frac{1}{160 - \theta} d\theta = \int k, \frac{1}{k}, 1 dt$
9		$\frac{d\theta}{dt} = \dots$ $k(160 - \theta)$ Separate variables with $(160 - \theta)$ in denom; or i Indication that LHS = $\ln f(\theta)$ RHS = kt or $\frac{1}{k}t$ or t (+ c) Subst. $t = 0, \theta = 20$ into equation containing 'c' Subst $t = 5, \theta = 65$ into equation containing 'c'	12 B1 B1 B1 *M1 A1 A1 * dep*M1 * A1	(2) The 2 @ 'B1' are indep $\int \frac{1}{160 - \theta} d\theta = \int k, \frac{1}{k}, 1 dt$
9		$\frac{d\theta}{dt} = \dots$ $k(160 - \theta)$ Separate variables with $(160 - \theta)$ in denom; or i Indication that LHS = ln f(θ) RHS = kt or $\frac{1}{k}t$ or t (+ c) Subst. $t = 0, \theta = 20$ into equation containing 'c' Subst. $t = 5, \theta = 65$ into equation containing 'c' Subst $t = 5, \theta = 65$ into equation containing 'c' Subst $t = -\ln 140$ (-4.94) ISW	12 B1 B1 B1 *M1 A1 A1 * dep*M1 * A1	(2) The 2 @ 'B1' are indep $\int \frac{1}{160 - \theta} d\theta = \int k, \frac{1}{k}, 1 dt$
9		$\frac{d\theta}{dt} = \dots$ $k(160 - \theta)$ Separate variables with $(160 - \theta)$ in denom; or i Indication that LHS = $\ln f(\theta)$ RHS = kt or $\frac{1}{k}t$ or t (+ c) Subst. $t = 0, \theta = 20$ into equation containing 'c' Subst $t = 5, \theta = 65$ into equation containing 'c' $c = -\ln 140$ (-4.94) ISW $k = \frac{1}{5} \ln \frac{140}{95}$ ($\approx 0.077 \text{ or } 0.078$) ISW	12 B1 B1 Number A1 A1	(2) The 2 @ 'B1' are indep $\int \frac{1}{160 - \theta} d\theta = \int k, \frac{1}{k}, 1 dt$ If wrong ln, final 3@A = 0
9		$\frac{d\theta}{dt} = \dots$ $k(160 - \theta)$ Separate variables with $(160 - \theta)$ in denom; or i Indication that LHS = ln f(θ) RHS = kt or $\frac{1}{k}t$ or t (+ c) Subst. $t = 0, \theta = 20$ into equation containing 'c' Subst. $t = 5, \theta = 65$ into equation containing 'c' Subst $t = 5, \theta = 65$ into equation containing 'c' $k = \frac{1}{5} \ln \frac{140}{95}$ (≈ 0.077 or 0.078) ISW Using their 'c' & 'k', subst $t = 10$ & evaluate θ	12 B1 B1 B1 *M1 A1 A1 **M1 A1 ********************	(2) The 2 @ 'B1' are indep $\int \frac{1}{160 - \theta} d\theta = \int k, \frac{1}{k}, 1 dt$ If wrong ln, final 3@A = 0

January 20. Mains Cloud. com

4725 Further Pure Mathematics 1

		1		1
1		M1		Multiply by conjugate of denominator
		A1 A1		Obtain correct numerator
	$\frac{7}{26} + \frac{17}{26}$ i.	A1	4	Obtain correct denominator
	26 26 2		4	
2	$\begin{pmatrix} 5 & 0 \end{pmatrix}$	B1		Both diagonals correct
-	(i) $\frac{1}{10} \begin{bmatrix} 3 & 0 \\ a & 2 \end{bmatrix}$	B1	2	Divide by correct determinant
	$(-a \ 2)$		2	Divide by concert determinant
	(2 2)	D1		Two elements correct
	(ii) $\begin{bmatrix} 5 & -2 \\ -2 & -2 \end{bmatrix}$	B1	2	
	$\left(2a 6 \right)$	B1	2	Remaining elements correct
			4	
3		M1		Express as sum of 3 terms
	$n^{2}(n+1)^{2} + n(n+1)(2n+1) + n(n+1)$	A1		2 correct unsimplified terms
		A1		3 rd correct unsimplified term
	$(1)^{2}(1)^{2}$	M1		Attempt to factorise
	$n(n+1)^2(n+2)$	A1ft		Two factors found, ft their quartic
		A1	6	Correct final answer a.e.f.
			6	
4		B1		State or use correct result
		M1		Combine matrix and its inverse
	$\begin{pmatrix} 0 & 0 \end{pmatrix}$	A1		Obtain I or I^2 but not 1
	$\begin{pmatrix} 0 & 0 \end{pmatrix}$	A1 A1	1	Obtain zero matrix but not 0
	$\begin{pmatrix} 0 & 0 \end{pmatrix}$	AI	4 4	S.C. If $0/4$, B1 for $AA^{-1} = I$
_			4	
5	Either	M1		Consider determinant of coefficients of LHS
		M1		Sensible attempt at evaluating any 3×3 det
	4k - 4	A1		Obtain correct answer a.e.f. unsimplified
		M1		Equate det to 0
	k = 1	A1ft	5	Obtain $k = 1$, ft provided all M's awarded
	Or	M1		Eliminate either <i>x</i> or <i>y</i>
		A1		Obtain correct equation
		M1		Eliminate 2 nd variable
		A1		
				Obtain correct linear equation D_{1} because that $L = 1$
		A1	_	Deduce that $k = 1$
			5	
6	(i) Either	B1 DB1	2	Reflection, in x-axis
	Or	B1 DB1		Stretch parallel to <i>y</i> -axis, s.f. –1
	(ii)	B1 DB1	2	Reflection, in $y = -x$
		ומעום		$\int x \sin \theta \sin$
	(iii) $\begin{pmatrix} 0 & 1 \\ 1 & 2 \end{pmatrix}$	B1 B1	2	Each column correct
	(iii) $ \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} $	ומומ		
	(iv)	B1B1B1	3	Rotation, 90° , clockwise about O
			9	S.C. If (iii) incorrect, B1 for identifying
				their transformation, B1 all details correct
		1		then it ansite mation, D1 an uttans collect

472	25 Ma	ark Schem	16	Mun
7	(i) $13^n + 6^{n-1} + 13^{n+1} + 6^n$ (ii)	B1 M1 A1 B1 B1 B1 B1 B1	3	Correct expression seen Attempt to factorise both terms in (i) Obtain correct expression Check that result is true for $n = 1$ (or 2) Recognise that (i) is divisible by 7 Deduce that u_{n+1} is divisible by 7 Clear statement of Induction conclusion
8	(i) (ii) $\alpha + \beta = 6k, \alpha\beta = k^2$ $\alpha - \beta = (4\sqrt{2})k$ (iii) $\sum \alpha' = 6k$ $\alpha' \beta = \alpha\beta - (\alpha - \beta) - 1$	M1 A1 B1 B1 M1 A1 B1ft M1 A1ft	2	Expand at least 1 of the brackets Derive given answer correctly State or use correct values Find value of $\alpha - \beta$ using (i) Obtain given value correctly (allow if $-6k$ used) Sum of new roots stated or used Express new product in terms of old roots Obtain correct value for new product
	$\alpha' \beta' = k^{2} - (4\sqrt{2})k - 1$ $x^{2} - 6kx + k^{2} - (4\sqrt{2})k - 1 = 0$	B1ft	4 10	Write down correct quadratic equation
9	(i) (ii) $1 + \frac{1}{3} - \frac{1}{2n-1} - \frac{1}{2n+1}$	M1 A1 M1 M1 A1 A1 A1 M1 A1	2	Use correct denominator Obtain given answer correctly Express terms as differences using (i) Do this for at least 1 st 3 terms First 3 terms all correct Last 3 terms all correct (in terms or n or r) Show pairs cancelling Obtain correct answer, a.e.f.(in terms of n)
	(iii) $\frac{4}{3}$	B1ft	1 9	Given answer deduced correctly, ft their (ii)

4725	Mark Scheme	Attempt to equate real and imaginary pan. Obtain both results a.e.f.
10 (i) $x^{2} - y^{2} = 2,2xy = \sqrt{5}$ $4x^{4} - 8x^{2} - 5 = 0$ $x = \pm \frac{\sqrt{10}}{2}, y = \pm \frac{\sqrt{2}}{2}$ $\pm (\frac{\sqrt{10}}{2} + i\frac{\sqrt{2}}{2})$ (ii) $z^{2} = 2 \pm i\sqrt{5}$ $z = \pm (\frac{\sqrt{10}}{2} \pm i\frac{\sqrt{2}}{2})$ (iii) (iv)	M1 A1 M1 A1ft B1ft B1 B1ft B1ft	Attempt to equate real and imaginary par.Out Obtain both results a.e.f.Eliminate to obtain quadratic in x^2 or y^2 Solve to obtain x (or y) values Correct values for both x & y obtained a.e.f.6Correct answers as complex numbers6Correct answers as complex numbers9Solve quadratic in z^2 Obtain correct answers Use results of (i)4Obtain correct answers, ft must include root from conjugate1Sketch showing roots correctly Sketch of straight line, \perp to α Bisector

January 20. Mainscloud.com

4726 Further Pure Mathematics 2

1	(i)	Give $1 + 2x + (2x)^2/2$
		Get $1 + 2x + 2x^2$

(ii)
$$\ln((1+2x+2x^2))$$
 M1
+(1-2x+2x^2)) =
 $\ln(2+4x^2) =$ A1 $\sqrt{1}$
 $\ln 2 + \ln(1+2x^2)$ M1
 $\ln 2 + 2x^2$ A1

2 (i)
$$x_2 = 1.8913115$$
 B1
 $x_3 = 1.8915831$ B1
 $x_4 = 1.8915746$ B1

(ii) $e_3/e_2 = -0.031(1)$ N

$$e_4/e_3 = -0.036(5)$$

State f'(α) $\approx e_3/e_2 \approx e_4/e_3$

3 (i) Diff. $\sin y = x$ Use $\sin^2 + \cos^2 = 1$ to A.G. Justify +

(ii) Get
$$2/(\sqrt{1-4x^2})$$

+ $1/(\sqrt{1-y^2}) \frac{dy}{dx} = 0$

Find $y = \sqrt{3/2}$ M1

```
Get -2\sqrt{3}/3
```

M1 A1	Reasonable 3 term attempt e.g. allow $2x^2/2$ cao SC Reasonable attempt at f'(0) and f''(0) M1 Get $1+2x+2x^2$ cao A1
M1	Attempt to sub for e^{2x} and e^{-2x}
A1√ M1 A1	On their part (i) Use of log law in reasonable expression cao SC Use of Maclaurin for f'(x) and f''(x) M1 One correct A1 Attempt f(0), f'(0) and f''(0) M1 Get cao A1
B1 B1√ B1	x_2 correct; allow answers which round For any other from their working For all three correct
M1 A1 B1√	Subtraction and division on their values; allow \pm Or answers which round to -0.031 and -0.037 Using their values but only if approx. equal; allow differentiation if correct conclusion; allow gradient for f'
M1 A1 B1	Implicit diff. to $dy/dx = \pm(1/\cos y)$ Clearly derived; ignore \pm e.g graph/ principal values
M1 A1 M1 A1√	Attempt implicit diff. and chain rule; allow e.g. $(1-2x^2)$ or $a/\sqrt{(1-4x^2)}$ Method leading to y AEEF; from their a above SC Write $\sin(\frac{1}{2}\pi - \sin^{-1}2x) = \cos(\sin^{-1}2x)$ B1 Attempt to diff. as above M1 Replace x in reasonable dy/dx and attempt to tidy M1 Get result above A1

4726

Mark S

B1

B1 B1

B1

B1

B1

B1

B1

M1

A1

M1

M1

A1

M1

A1

A1

4	(i)	Let $x = \cosh \theta$ such that $dx = \sinh \theta d\theta$	M1
		Clearly use $\cosh^2 - \sinh^2 = 1$	A1
	(ii)	Replace $\cosh^2 \theta$	M1
		Attempt to integrate their	M1
		expression	
		Get $\frac{1}{4}\sinh 2\theta + \frac{1}{2}\theta (+c)$	A1

5 (i) (a) State
$$(x=) \alpha$$
 B1
None of roots B1

Clearly replace for *x* to A.G.

- 6 (i) Correct definitions used Attempt at $(e^{x} - e^{-x})^{2}/4 + 1$ Clearly derive A.G.
 - (ii) Form a quadratic in $\sinh x$ Attempt to solve Get $\sinh x = -\frac{1}{2}$ or 3 Use correct ln expression Get $\ln(-\frac{1}{2}+\frac{\sqrt{5}}{2})$ and $\ln(3+\sqrt{10})$
- 7 (i) $OP=3+2\cos\alpha$ $OQ=3 + 2\cos(\frac{1}{2}\pi + \alpha)$ M1 $=3-2\sin\alpha$ Similarly OR=3 – $2\cos \alpha$ M1

$$OS=3 + 2\sin \alpha$$

Sum = 12

(ii) Correct formula with attempt at r^2 M1 Square *r* correctly A1 Attempt to replace $\cos^2\theta$ with M1 $a(\cos 2\theta \pm 1)$ Integrate their expression Get $^{11\pi}/_4 - 1$ A1√ A1

Scheme	WWW. My Marks January 20. Naihscioud.com
Clearly derive A.G.	4.COM
Allow $a (\cosh 2\theta \pm 1)$ Allow $b \sinh 2\theta \pm a\theta$	
Condone no + <i>c</i> SC Use expo. def ⁿ ; three terms Attempt to integrate Get $\frac{1}{8}(e^{2\theta}-e^{-2\theta}) + \frac{1}{2}\theta(+c)$ Clearly replace for <i>x</i> to A.G.	M1 M1 A1 B1
No explanation needed	
Some discussion of values close to central leading to correct conclusion	
Correct <i>x</i> for <i>y</i> =0; allow 0.591, 1.5	59, 2.31
Turning at (1,0.8) and/or (1,-0.8)	
Meets <i>x</i> -axis at 90°	
Symmetry in <i>x</i> -axis; allow	
Allow $(e^{x}+e^{-x})^{2}+1$; allow /2	
Factors or formula	
On their answer(s) seen once	
Any other unsimplified value	
Attempt at simplification of at lea correct expressions	st two
cao	
Need not be expanded, but three to	erms if it is

Need three terms cao

8	(i)	Area = $\int 1/(x+1) dx$ Use limits to ln(<i>n</i> +1) Compare area under curve to areas of rectangles	B1 B1 B1
		Sum of areas = $1x(\frac{1}{2} + \frac{1}{3} + + \frac{1}{(n+1)})$ Clear detail to A.G.	M1 A1
	(ii)	Show or explain areas of rectangles above curve Areas of rectangles (as above) > area under curve	M1 A1
	(iii)	Add 1 to both sides in (i) to make $\sum_{n=1}^{1/r} \frac{1}{r}$ Add $\frac{1}{r+1}$ to both sides in (ii) to make $\sum_{n=1}^{1/r} \frac{1}{r}$	B1 B1
	(iv)	State divergent Explain e.g. $\ln(n+1) \rightarrow \infty$ as $n \rightarrow \infty$	B1 B1
9	(i)	Require denom. = 0 Explain why denom. $\neq 0$	B1 B1
	(ii)	Set up quadratic in x Get $2yx^2-4x+(2a^2y+3a) = 0$ Use $b^2 \ge 4ac$ for real x	M1 A1 M1
		Attempt to solve their inequality Get $y > \frac{1}{2a}$ and $y < \frac{-2}{a}$	M1 A1

(iii)	Split into two separate integrals	M1
	Get $k \ln(x^2 + a^2)$	A1
	Get $k_1 \tan^{-1}(x/a)$	A1
	Use limits and attempt to simplify	M1
	Get $\ln 2.5 - 1.5 \tan^{-1}2 + 3\pi/8$	
		A1

	www.mymath	2
cheme Janu	ary 20 math	Maths .
Include or imply correct limits		Cloud.
Justify inequality		-OM
Sum seen or implied as 1 x y values		
Explanation required e.g. area of last rectangle at $x=n$, area under curve to $x=n$		
First and last heights seen or implied; A.C	3.	
Must be clear addition		
Must be clear addition; A.G.		
Allow not convergent		
Attempt to solve, explain always > 0 etc.		
Produce quadratic inequality in a from th	air	

Produce quadratic inequality in y fro	om their
quad.; allow use of = or <	
Factors or formula	
Justified from graph	
SC Attempt diff. by quot./product ru	ule M1
Solve $dy/dx = 0$ for two values of x	M1
Get $x=2a$ and $x=-a/2$	A1
Attempt to find two y values	M1
Get correct inequalities (graph used	to justify
them) A1	

Or $p \ln(2x^2+2a^2)$ k_1 not involving a

AEEF

ALLI	
SC Sub. $x = a \tan \theta$ and $dx = a \sec^2 \theta d\theta$	M1
Reduce to $\int p \tan \theta - p_1 d\theta$	A1
(ignore limits here)	
Integrate to $p\ln(\sec\theta) - p_1\theta$	A1
Use limits (old or new) and	
attempt to simplify	M1
Get answer above	A1

January 20. Mains Cloud. com

4727 Further Pure Mathematics 3

1 (i) (a)	(n =) 3	B1	1	For correct <i>n</i>
(b)	(n =) 6	B1	1	For correct <i>n</i>
(c)	(n =) 4	B1	1	For correct <i>n</i>
(ii)	(n =) 4, 6	B1		For either 4 or 6
		B1	2	For both 4 and 6 and no extras
				Ignore all <i>n</i> 8
				SR B0 B0 if more than 3 values given, even if they include 4 or 6
		5	5	
2 (i)	$\frac{\sqrt{3} + i}{\sqrt{3} - i} \times \frac{\sqrt{3} + i}{\sqrt{3} + i} = \frac{1}{2} + \frac{1}{2}i\sqrt{3}$	M1		For multiplying top and bottom by complex conjugate
	$OR \ \frac{\sqrt{3} + i}{\sqrt{3} - i} = \frac{2e^{\frac{1}{6}\pi i}}{2e^{-\frac{1}{6}\pi i}}$			<i>OR</i> for changing top and bottom to polar form
	$=(1)e^{\frac{1}{3}\pi i}$	A1		For $(r =) 1$ (may be implied)
		A1	3	For $(\theta =) \frac{1}{3}\pi$
				SR Award maximum A1 A0 if $e^{i\theta}$ form is not seen
(ii)	$\left(e^{\frac{1}{3}\pi i}\right)^6 = e^{2\pi i} = 1 \implies (n=) 6$	M1		For use of $e^{2\pi i} = 1$, $e^{i\pi} = -1$, $\sin k\pi = 0$ or $\cos k\pi = \pm 1$ (may be implied)
		A1	2	For $(n =) 6$ SR For $(n =) 3$ only, award M1 A0
			5	
3 (i)	$\mathbf{n} = [2, 1, 3] \times [3, 1, 5]$	M1		For using direction vectors and attempt to
	=[2, -1, -1]	A1	2	find vector product For correct direction (allow multiples)
(ii)	$d = \frac{[5, 2, 1] \cdot [2, -1, -1]}{\sqrt{6}}$	B1		For $(AB =) [5, 2, 1]$ or any vector joining lines
	$u = \sqrt{6}$	M1		For attempt at evaluating AB .n
		M1		For $ \mathbf{n} $ in denominator
	$=\frac{7}{\sqrt{6}}=\frac{7}{6}\sqrt{6}=2.8577$	A1	4	For correct distance
		6	5	

4727	Mari	< Scł	nem	he January 20. The January 20. The January 20. January 20. The solve correct auxiliary equation For correct roots
4	$m^{2} + 4m + 5 (= 0) \Longrightarrow m = \frac{-4 \pm \sqrt{16 - 20}}{2}$	M1		For attempt to solve correct auxiliary equation
	$= -2 \pm i$	A1		For correct roots
	$CF = e^{-2x} \left(C \cos x + D \sin x \right)$	A1√	1	For correct CF (here or later). f.t. from m AEtrig but not forms including e^{ix}
	$PI = p \sin 2x + q \cos 2x$	B1		For stating a trial PI of the correct form
	$y' = 2p \cos 2x - 2q \sin 2x$ $y'' = -4p \sin 2x - 4q \cos 2x$	M1		For differentiating PI twice and substituting into the DE
	$\cos 2x (-4q + 8p + 5q) + \sin 2x (-4p - 8q + 5p) = 65 \sin 2x$	A1		For correct equation
				For equating coefficients of $\cos 2x$ and $\sin 2x$
	8p+q=0 p-8q=65 PI = sin 2 x-8 cos 2 x	M1 A1		and attempting to solve for p and/or q For correct p and q
	$\Rightarrow y = e^{-2x} (C \cos x + D \sin x) + \sin 2x - 8 \cos 2x$	B1√	9	For using $GS = CF + PI$, with 2 arbitrary constants in CF and none in PI
		9	1	
5 (i)	$y = u - \frac{1}{x} \Longrightarrow \frac{dy}{dx} = \frac{du}{dx} + \frac{1}{x^2}$	M1 A1	1	For differentiating substitution For correct expression
				Tor correct expression
	$x^{3}\left(\frac{\mathrm{d}u}{\mathrm{d}x} + \frac{1}{x^{2}}\right) = x\left(u - \frac{1}{x}\right) + x + 1$	M1		For substituting y and $\frac{dy}{dx}$ into DE
	$\Rightarrow x^2 \frac{\mathrm{d}u}{\mathrm{d}x} = u$	A1	4	For obtaining correct equation AG
(ii)	METHOD 1	M1		For separating variables and attempt at integration
()	$\int \frac{1}{u} du = \int \frac{1}{x^2} dx \implies \ln ku = -\frac{1}{x}$	A1		For correct integration (k not required here)
	$ku = e^{-1/x} \implies k\left(y + \frac{1}{x}\right) = e^{-1/x}$	M1		For any 2 of For all 3 of k seen, exponentiating, substituting for u
	$\kappa u = e^{-y} - \kappa \left(y + \frac{1}{x}\right) = e^{-y}$	M1		For all 3 of substituting for u
	$\Rightarrow y = Ae^{-1/x} - \frac{1}{x}$	A1	5	For correct solution AEF in form $y = f(x)$
	METHOD 2			
	$\frac{\mathrm{d}u}{\mathrm{d}x} - \frac{1}{x^2}u = 0 \implies \text{I.F. } \mathrm{e}^{\int -1/x^2 \mathrm{d}x} = \mathrm{e}^{1/x}$	M1		For attempt to find I.F.
	$\implies \frac{\mathrm{d}}{\mathrm{d}x} \left(u \mathrm{e}^{1/x} \right) = 0$	A1		For correct result
	$u e^{1/x} = k \implies y + \frac{1}{x} = k e^{-1/x}$	M1		From $u \times I.F.=$, for k seen for substituting for u } in either
	x	M1		\Box order
	$\Rightarrow y = k e^{-1/x} - \frac{1}{x}$	A1		For correct solution AEF in form $y = f(x)$
	$\rightarrow y - k c - \frac{1}{x}$			y = 1 (x)

4727	7 Mark Scheme January 20, Mark Scheme $January 20$, METHOD 1 Use 2 of $[-4, 2, 0], [0, 0, 3], [-4, 2, 3], [4, -2, 3]$ M1 For finding vector product of 2 appropriate					
6 (i)	METHOD 1					
	Use 2 of [-4, 2, 0], [0, 0, 3], [-4, 2, 3], [4, -2, 3] or multiples	M1		For finding vector product of 2 appropriate vectors in plane <i>ACGE</i>		
	$\mathbf{n} = k [1, 2, 0]$	A1		For correct n		
	Use A[4, 0, 0], C[0, 2, 0], G[0, 2, 3] OR E[4, 0, 3]	M1		For substituting a point in the plane		
	$\mathbf{r} \cdot [1, 2, 0] = 4$	A1	4	For correct equation. AEF in this form		
	METHOD 2 $\mathbf{r} = [4, 0, 0] + \lambda [-4, 2, 0] + \mu [0, 0, 3]$	M1		For writing plane in 2-parameter form		
	$\Rightarrow x = 4 - 4\lambda, \ y = 2\lambda, \ z = 3\mu$	A1		For 3 correct equations		
	x + 2y = 4	M1		For eliminating λ (and μ)		
 (ii)	$\Rightarrow \mathbf{r} \cdot [1, 2, 0] = 4$ $\theta = \cos^{-1} \frac{[3, 0, -4] \cdot [1, 2, 0]}{\sqrt{3^2 + 0^2 + 4^2} \sqrt{1^2 + 2^2 + 0^2}}$	A1 B1 \		For correct equation. AEF in this form For using correct vectors (allow multiples). f.t.		
(11)	$\theta = \cos \frac{1}{\sqrt{3^2 + 0^2 + 4^2}} \sqrt{1^2 + 2^2 + 0^2}$	M1 M1		from n For using scalar product For multiplying both moduli in denominator		
	$\theta = \cos^{-1} \frac{3}{5\sqrt{5}} = 74.4^{\circ}$	A1	4	For correct angle		
	(74.435°,1.299)					
(iii)	<i>AM</i> : $(\mathbf{r} =) [4, 0, 0] + t[-2, 2, 3]$	M1		For obtaining parametric expression for AM		
	(or [2, 2, 3] + t[-2, 2, 3])	A1		For correct expression seen or implied		
	3(4-2t) - 4(3t) = 0	M1		For finding intersection of AM with ACGE		
	$ (or \ 3(2-2t)-4(3+3t) = 0) t = \frac{2}{3} (or \ t = -\frac{1}{3}) OR \ \mathbf{w} = \left\lceil \frac{8}{3}, \frac{4}{3}, 2 \right\rceil $	A1		For correct <i>t OR</i> position vector		
	AW: WM = 2:1	A1	5	For correct ratio		
		13				
(i) (a)	$x + y - a \in \mathbb{R}$	B1	2	For stating closure is satisfied		
(")	(x * y) * z = (x + y - a) * z = x + y + z - 2a	M1		For using 3 distinct elements bracketed both ways		
	x * (y * z) = x * (y + z - a) = x + y + z - 2a	A1		For obtaining the same result twice for associativity		
	$x + e - a = x \implies e = a$	B1		SR 3 distinct elements bracketed once, expanded, and symmetry noted scores M1 A1 For stating identity = a		
	-1 -1	M1		For attempting to obtain inverse of x		
	$x + x^{-1} - a = a \implies x^{-1} = 2a - x$	A1	6	For obtaining inverse $= 2a - x$		
				<i>OR</i> for showing that inverses exist, where $x + x^{-1} = 2a$		
<u>а</u>)	$x + y - a = y + x - a \Rightarrow$ commutative	B1	1	For stating commutativity is satisfied, with		
(b)	x order $2 \Longrightarrow x^* x = e \implies 2x - a = e$	M1		justification For obtaining equation for an element of order		
(c)	$x \text{ order } 2 \implies x \cdot x = e \implies 2x - a = e$ $\implies 2x - a = a \implies x = a = e$	A1	2	2		
	$\Rightarrow 2x - a = a \Rightarrow x = a = e$ $OR \ x = x^{-1} \Rightarrow x = 2a - x \Rightarrow x = a = e$		-	For solving and showing that the only solution		
				is the identity (which has order 1)		
	\Rightarrow no elements of order 2			<i>OR</i> For proving that there are no self-inverse		

4727	Mar	k Scl	hem	For attempting to disprove closure For stating closure is not necessarily satisfied $(0 < x + y_n, 5$ required)
(ii)	e.g. $2+1-5 = -2 \notin \mathbb{R}^+$	M1		For attempting to disprove closure
	\Rightarrow not closed	A1		For stating closure is not necessarily satisfied $(0 < x + y)$, 5 required)
	e.g. $2 \times 5 - 11 = -1 \notin \mathbb{R}^+$	M1		For attempting to find an element with no inverse
	\Rightarrow no inverse	A1	4	For stating inverse is not necessarily satisfied (x10 required)
		13	3	
(i)	$\sin \theta = \frac{1}{2i} \left(e^{i\theta} - e^{-i\theta} \right)$	B1		<i>z</i> may be used for $e^{i\theta}$ throughout For expression for sin θ seen or implied
		M1		For expanding $\left(e^{i\theta} - e^{-i\theta}\right)^6$
	$\sin^6 \theta =$			At least 4 terms and 3 binomial coefficients required.
	$-\frac{1}{64} \Big(e^{6i\theta} - 6e^{4i\theta} + 15e^{2i\theta} - 20 + 15e^{-2i\theta} - 6e^{-4\theta} \Big) \Big]$		-6i0)	For correct expansion. Allow $\frac{\pm(i)}{64}(\cdots)$
	$=-\frac{1}{64}\left(2\cos 6\theta -12\cos 4\theta +30\cos 2\theta -20\right)$	A1 M1		For grouping terms and using multiple angles
	$\sin^6\theta = -\frac{1}{32}(\cos 6\theta - 6\cos 4\theta + 15\cos 2\theta - 10)$	A1	5	For answer obtained correctly AG
(ii)	$\cos^{6}\theta = OR \sin^{6}\left(\frac{1}{2}\pi - \theta\right) =$	M1		For substituting $\left(\frac{1}{2}\pi - \theta\right)$ for θ throughout
	$-\frac{1}{32}(\cos(3\pi-6\theta)-6\cos(2\pi-4\theta)+15\cos(\pi-6\theta))$	20)-	10)	
	6. 1. (A1	•	For correct unsimplified expression
	$\cos^{\theta}\theta = \frac{1}{32}(\cos 6\theta + 6\cos 4\theta + 15\cos 2\theta + 10)$	A1	3	For correct expression with $\cos n\theta$ terms AEF
(iii)	$\int_0^{\frac{1}{4}\pi} \frac{1}{32} \left(-2\cos 6\theta - 30\cos 2\theta\right) d\theta$	B1√		For correct integral. f.t. from $\sin^6 \theta - \cos^6 \theta$
	$= -\frac{1}{16} \left[\frac{1}{6} \sin 6\theta + \frac{15}{2} \sin 2\theta \right]_{0}^{\frac{1}{4}\pi}$	M1	I	For integrating $\cos n \theta$, $\sin n \theta or e^{in\theta}$
		A1		For correct integration. f.t. from integrand
	$=-\frac{11}{24}$	A1	4	For correct answer WWW

January 20. Tains cloud.com

4728

4728 Mechanics 1

1 (i)		M1	Uses CoLM
	0.5x6 = 0.5x0.8 + 4m	A1	
	m = 0.65	A1	If g used throughout, possible 3 marks
	111 - 0.05		If g used throughout, possible 5 marks
		[3]	
		M1	After momentums opposite signs
(ii)	0.5x6 = -0.5x0.8 + 4m	A1	
(11)			
	m = 0.85	A1	If g used throughout, 0 marks
		[3]	
2 (i)	T = 400 N	B1	Order immaterial
2 (1)			
	D = 400 + 900	M1	Or T + 900; sign correct
	= 1300 N	A1	
		[3]	
(::)			(Award M marks over if a included in motorma
(ii)			(Award M marks even if g included in ma terms.
			M marks require correct number forces)
		M1	Uses N2L one object only
	$500 \times 0.6 = T - 400$	A1	
	T = 700 N	A1	
		M1	Uses N2L other object
	$1250 \times 0.6 = D - 900 - 700$	A1ft	ft cv(T from (ii)); allow T instead of its value
			It ev(1 from (fr)), anow 1 mistead of its value
	D = 2350 N	A1	
	OR		
		M1	Uses N2L for both objects
	$(500 \pm 1250) \pm 0.6 = D = 400 = 000$	A1	
	$(500 + 1250) \times 0.6 = D - 400 - 900$		
	D = 2350 N	A1	
		[6]	
3 (i)	5cos30 or 5 sin 60 or 4.33	B1	Order immaterial, accept +/ May be awarded in
5 (1)			
	5cos 60 or 5sin30 or 2.5	B1	(ii) if no attempt in (i)
		[2]	
(ii)		M1*	Subtracts either component from either force
	7-4.33 (= 2.67) and 9 - 2.5 (= 6.5)	A1	
	$R^2 = 2.67^2 + 6.5^2$		
		D*M	
	R = 7.03	1	3sf or better
	$\tan\theta = 6.5/2.67$	A1	Valid trig for correct angle
	$\theta = 67.6, 67.7 \text{degrees}$	D*M	3sf or better
		1	
		A1	
		[6]	
4 (i)	20cos 30	M1	Resolves 20 (accept 20 sin30)
	$20\cos 30 = 3a$	M1	Uses N2L horizontally, accept g in ma term
	$a = 5.77 \text{ ms}^{-2}$	A1	,, , ,
	a = 3.77 IIIS		
		[3]	
(ii)		M1	Resolves vertically (accept -, cos if sin in i);
()	$R = 3x9.8 + 20 \sin 30 (= 39.4)$	A1	correct no. terms
	$F = 20\cos 30 (= 17.3)$	B1	Correct (Neither R nor F need be evaluated)
	$17.3 = 39.4 \mu$	M1	Uses $F = \mu R$
	$\mu = 0.44$	A1	•
	μ ν		
		[5]	
	-		·

4728	Ma	ark Scheme	Attempt at integration Award if c omitted
5 (i)	$V = \int 0.8tdt$ v = 0.8t ² /2 (+c) t = 0, v = 13, (c = 13) v = 0.4x 6 ² (+c) v = 27.4 ms ⁻¹	M1* A1 M1 D*M1 A1 [5]	Attempt at integration Award if c omitted
(ii)	$s = \int 0.4t^{2} (+c)dt$ s = 0.4t ³ /3 + 13t (+k) t=0, s=0, (k=0) s = 0.4x6 ³ /3 + 13x6 s = 106.8 m	M1* A1ft M1 D*M1 A1 [5]	Attempt at integration of v(t) ft cv(v(t) in (i)) Allow if k=0 assumed. Accept 107 m.
(iii)	Fig.1 has zero initial velocity/gradient Fig. 3 does not have a increasing velocity/gradient	B1 [1] B1 B1 [2]	
6 (i) a b	2.5 = 9.8t ² /2 t = 0. 714 s or better or 5/7 $v^2 = 2x9.8x2.5 \ OR \ v = 9.8 \ x \ 0.714$ $v = 7 \ ms^{-1} \ or \ 6.99 \ or \ art \ 7.00$	M1 A1 [2] M1 A1 [2]	Uses $s = 0 +/-gt^2/2$ Not awarded if - sign "lost" Uses $v^2 = 0 +/-2gs$ or $v = u +/-gt$ Not awarded if - sign "lost"
(ii)	$R = 2x9.8sin60 (= 16.97 = 17)$ $F = 0.2x16.97 (= 3.395 \text{ or } 3.4)$ $Cmpt weight = 2x9.8cos60 (= 9.8)$ $2a = 9.8 - 3.395$ $a = 3.2 \text{ ms}^{-2}$ Distance down ramp = 5 m $v^{2} = 2x3.2x5$ $v = 5.66 \text{ or } 5.7$	B1 M1 A1ft B1 M1 A1ft B1 M1 A1ft [9]	With incorrect angle, e.g $R = 2x9.8\cos 60 (=9.8) B0$ F = 0.2x9.8 (=1.96) M1A1 Cmpt wt = 2x9.8sin60 (=16.97) B0 2a = 16.97 - 1.96 M1 a = 7.5 A1 $$ ft cv(R and Cmpt weight) $v^2 = 2x7.5x5$ $v = 8.66$ or $8.7 A1$ ft cv($\sqrt{(10a)}$)
7 (i)	p = 4 - 2x0.4 (= 3.2) q = 1 - 2x0.4 (= 0.2) 0.7x3.2 - 0.3x0.2 = (1x)v $v = 2.18 \text{ ms}^{-1}$	M1 A1 A1 M1 A1 A1 A1 [6]	Use of $v = u - 0.4t$ Accept $q = -0.2$ from $-1+2*0.4$ Uses CoLM on reduced velocities

4728		Mark Scheme	Straight line with larger y intercept slopes towards t axis, but does not reach it. Straight line with negative y intercept slopes
(ii)		B1	Straight line with larger y intercept slopes
a		B1	towards t axis, but does not reach it. Straight line with negative y intercept slopes towards t axis,
		B1	and gets to t axis before other line ends.
		[3]	SR if t=2 in ii give B1 if line stops before axis
b	0 = 1 - 0.4t	M1	Finds when Q comes to rest (any method)
	t = 2.5 s	Al	Uses $s = ut - 0.4t^2/2$
	$P = 4x3 - 0.5x0.4x3^2$	M1	Uses $s = ut - 0.4t / 2$
	$P = 4x3 - 0.5x0.4x3$ $Q = 1x2.5 - 0.5x0.4x2.5^{2}$	A1 A1	(nb $0^{(2)} = 1^{(2)} - 0.4Q^2/2$ B1; convincing
	Q = 1x2.3 = 0.5x0.4x2.3 PQ = 10.2 + 1.25 = 11.45 m	Al	evidence (graph to scale, or calculation that Q
	1 Q 10.2 + 1.25 11.45 m	[6]	comes to rest and remains at rest at t less than
		[0]	3, M1A1;graph A1 needs –ve v intercept)
			SR if t=2 in iib, allow M1 for s= ut - $0.4t^2/2$
			And A1 for PQ=8.4

Alternative for Q3 where 7 N and 9N forces combined initially

3 (i)	5cos30 or 5 sin 60 or 4.33	B1	Order immaterial, accept +/ May be awarded
	5cos 60 or 5sin30 or 2.5	B1	in (ii) if no attempt in (i)
		[2]	
(ii)	$Z^2 = 7^2 + 9^2 (= 130, Z = 11.4017)$		Z is resultant of 7N and 9N forces only
	$\cos(\text{angle of } Z \text{ with } y \text{ axis}) = 9/11.4017$		
	angle of Z with y axis = 37.8746		
	Angle opposite R in triangle of forces =		R is resultant of all 3 forces
	180 -(37.8746+90+30)	M1*	Complete method
	= 22.125 (Accept 22)	A1	
	$R^2 = 5^2 + 11.4017^2 - 2x5x11.4017\cos 22.125$	D*M1	Cosine rule to find R
	R (= 7.0269) = 7.03 N	A1	
	$11.4017^2 = 5^2 + 7.0269^2 - 2x5x7.0269\cos A$		Or Sine Rule. A is angle between R and 5N
	(A = 142.33)		forces
	Angle between R and y axis = $142.33-30$ -	D*M1	
	90 (=22.33)		Complete method
	θ (= 90-22.33) =67.7 degrees	A1	θ is angle between R and x axis
		[6]	

4729 Mechanics 2

1	$(20 \sin \theta)^2 = 2 \times 9.8 \times 17$	M1	or B2 for
		A1	$\max ht = v^2 \sin^2 \theta / 2g$
	$\sin\theta = \sqrt{(2x9.8x17) \div 20}$	M1	subst. values in above
	$\theta = 65.9^{\circ}$	A1 4	4
LI			
2	$\overline{x} = 8$	B1	
	$T \sin 30^{\circ} x \ 12 = 8 \ x \ 2 \ x \ 9.8$	M1	ok if g omitted
		A1 ft	ft their \overline{x}
	T = 26.1	A1 4	4
3 (i)	140 x X = 40 x 70	M1	
	X = 20 N	A1	
	at F 20 N to the right	B1	inspect diagram
	at G 20 N to the left	B1 4	SR B1 for correct directions only
(ii)	$\mathbf{d} = (2\mathbf{x}40\sin\Pi/2) \div 3\Pi/2$	M1	must be radians
		A1	
	₫ = 17.0	A1	16.98 160/3П (8/15П m)
	$70\overline{y} = 100x60 + 217 x 10$	M1	
		A1 ft	ft 200 + their d or 2 + their d (m)
	$\overline{y} = 117$	A1 6	116.7 10
4 (i)	$P/10 - 800 \times 9.8 \sin 12^\circ - 100k = 800 \times 0.25$	M1	$P/10 = D_1 \text{ ok}$
		A1	D ₁ ok
	$P/20 - 400k = 800 \times 0.75$	M1	$P/20 = D_2 \text{ ok}$
		A1	$D_1 = 2D_2$ needed for this A1
	solving above	M1	
	<i>k</i> = 0.900	A1	AG 0.9000395
	$P = 19\ 200$	A1 7	or 19.2 kW (maybe in part (ii))
(ii)	$0.9 v^2 = 28 \ 800/v$	M1	ok if 19200/v
	solving above	M1 *	$(v^3 = 32\ 000)$
	$v = 31.7 \text{ m s}^{-1}$	A1 3	10

5 (i)	0.8 <i>S</i>	B1	vert comp of S
	0.6 T	B1	vert comp of <i>T</i>
	$S\cos\alpha = T\cos\beta + 0.2 \ge 9.8$	M1	
	0.8 S = 0.6 T + 1.96 aef	A1 4	AG $4S = 3T + 9.8$
(ii)	0.6 <i>S</i>	B1	
	0.8 T	B1	
	$0.2 \ge 0.24 \ge 8^2$	B1	3.072 384/125
	$S\sin\alpha + T\sin\beta = 0.2 \ge 0.24 \ge 8^2$	M1	must be $mr\omega^2$
	6S + 8T = 30.72	A1	aef
	eliminate S or T	M1	
	S = 3.4 N	A1	3.411
	T = 1.3 N	A1 8	1.282 12

4729	Mark So	cheme	January 20. Nath	A MARTINE
				SC/Q
6 (i)	$x = v \cos \theta t$	B1	Ì	L'UY
	$y = v\sin\theta t - \frac{1}{2} x 9.8 t^2$	B1	or g	.00
	substitute $t = x/v\cos\theta$	M1	ļ	
	$y = x \tan \theta - 4.9 x^2 / v^2 \cos^2 \theta$	A1 4	AG	
(ii)	Sub y = $-h$, x = h, v = 14, θ = 30	M1	signs must be correct	j
	$-h = h/\sqrt{3 - h^2/30}$	A1	aef	1
	solving above	M1		1
	h = 47.3	A1 4		1
(iii)	$v_v^2 = (14\sin 30^\circ)^2 - 2x9.8x(-47.3)$	M1	$14\cos 30^\circ t = 47.3 \text{ ft } \& v_y = 14\sin 30^\circ - 9.8t$	1
	(double negative needed) ft their -47.3	A1 ft	$t = 3.90$ (or dy/dx=1/ $\sqrt{3} - x/15$ etc ft)	1
·	$v_{\rm v} = \pm 31.2$	A1	$v_{\rm v} = \pm 31.2 \ (\tan \alpha = 1/\sqrt{3} - 47.3/15)$	1
	$\tan^{-1}(31.2/14\cos 30^{\circ})$	M1	tan ⁻¹ (31.2/14cos30°)	1
1	$\alpha = 68.8^{\circ}$ below horiz/21.2° to d'vert.	A1 5	68.8°/	1
(iv)	$\frac{1}{2}mx14^2 + mx9.8x47.3 = \frac{1}{2}mv^2$	M1	ft $(12.1^2 + 31.2^2)$	1
	v = 33.5	A1 2	33.5 15	1

7 (i)	$p = 4 \text{ m s}^{-1}$	B1	P's first speed
	$0.8 = 0.2p_1 + 0.3q_1$	M1	
		A1	
	$0.5 = (q_1 - p_1)/4$	M1	
		A1	
	solving above	M1	
	$q_1 = 2.4$ 12/5	A1	
			Q's first speed
	$p_1 = 0.4$ 2/5	A1 8	
			may be in (ii). SR 1 for both negative
(ii)	$0.8 = 0.2p_2 + 0.3q_2$	M1	
		A1	
	$0.5 = (p_2 - q_2)/2$	M1	
		A1	
	solving above	M1	
	$p_2 = 2.2$ 11/5	A1	
	$q_2 = 1.2$ 6/5	A1 7	
(iii)	$R = 0.3 \times 1.2^2 / 0.4$	M1	
	R = 1.08 N	A1 2	17

January 20. Tains cloud.com

4730 Mechanics 3

1 (i)	For triangle sketched with sides (0.5)2.5 and (0.5)6.3 and angle θ correctly marked OR Changes of velocity in i and j directions 2.5cos θ – 6.3 and 2.5sin θ , respectively. For sides 0.5x2.5, 0.5x6.3 and 2.6 (or 2.5, 6.3 and 5.2) OR -2.6cos α = 0.5(2.5cos θ – 6.3) and 2.6sin α = 0.5(2.5sin θ) [5.2 ² = 2.5 ² + 6.3 ² – 2x2.5x6.3cos θ OR 2.6 ² = 0.5 ² {(2.5cos θ – 6.3) ² + (2.5sin θ) ²] cos θ = 0.6	B1 B1ft M1 A1 [4]	May be implied in subsequent working. May be implied in subsequent working. For using cosine rule in triangle or eliminating α . AG
(ii)	$\sin \alpha = 2.5 \times 0.8/5.2 \qquad \text{OR} \\ -2.6 \cos \alpha = 0.5(2.5 \times 0.6 - 6.3)$ Impulse makes angle of 157° or 2.75° with original direction of motion of P.	M1 A1 M1 A1 [4]	For appropriate use of the sine rule or substituting for θ in one of the above equations in θ and α For evaluating $(180 - \alpha)^{\circ}$ or $(\pi - \alpha)^{c}$ SR (relating to previous 2 marks; max 1 mark out of 2) $\alpha = 23^{\circ}$ or 0.395° B1

2 (i)	[70x2 = 4X - 4Y]	M1	For taking moments about A for AB (3 terms
			needed)
	X - Y = 35	A1	
		[2]	
(ii)	[110x3 = -4X + 6Y]	M1	For taking moments about C for BC (3 terms
			needed)
	2X - 3Y + 165 = 0	A1	AG
		[2]	
(iii)		M1	For attempting to solve for X and Y
			ft any (X, Y) satisfying the equation given in
	X = 270, Y = 235	A1ft	(ii)
		M1	For using magnitude = $\sqrt{X^2 + Y^2}$
	Magnitude is 358N	A1ft	ft depends on all 4 Ms
		[4]	

.

4730	Mark S	Scheme	For using $T = \lambda x/L$ for PA or PB	Stills
3 (i)	$[T_A = (24x0.45)/0.6, T_B = (24x0.15)/0.6]$ $T_A - T_B = 18 - 6 = 12 = W \implies P \text{ in equil'm.}$	M1 A1 [2]	For using $T = \lambda x/L$ for PA or PB	Ud.com
(ii)	Extensions are $0.45 + x$ and $0.15 - x$ Tensions are $18 + 40x$ and $6 - 40x$	B1 B1 [2]	AG From T = λ x/L for PA and PB	
(iii)	$[12 + (6 - 40x) - (18 + 40x) = 12 \ddot{x}/g]$ $\ddot{x} = -80gx/12 \Rightarrow$ SHM Period is 0.777s	M1 A1 A1 [3]	For using Newton's second law (4 terms required) AG From Period = $2\pi \sqrt{\frac{12}{(80 g)}}$	
(iv)	$[v_{max} = 0.15 \sqrt{80 g / 12} or v_{max} = 2 \pi x 0.15 / 0.777 or \frac{1}{2} (12/g) v_{max}^{2} + mg(0.15) +24 {0.45^{2} + 0.15^{2} - 0.6^{2}} / (2x0.6) = 0] Speed is 1.21 ms^{-1}$	M1 A1 [2]	For using $v_{max} = An$ or $v_{max} = 2\pi A/T$ or conservation of energy (5 terms needed)	

4 (i)	Loss in PE = mg($0.5\sin\theta$)	B1	For using KE gain = PE loss (3 terms required)
	$\begin{bmatrix} \frac{1}{2} mv^{2} - \frac{1}{2} m3^{2} = mg(0.5\sin\theta) \\ v^{2} = 9 + 9.8\sin\theta \end{bmatrix}$	M1 A1 [3]	AG
(ii)	$a_r = 18 + 19.6 \sin \theta$	B1	Using $a_r = \sqrt{2}/0.5$
	$[ma_t = mg \cos \theta]$ a _t = 9.8cos θ	M1 A1 [3]	For using Newton's second law tangentially
(iii)	$[T - mg \sin \theta = ma_r]$ T - 1.96sin θ = 0.2(18 + 19.6sin θ) T = 3.6 + 5.88sin θ θ = 3.8	M1 A1 A1 B1 [4]	For using Newton's second law radially (3 terms required) AG

4730) Mark S	Scheme	May be implied. For using p.c.mmtm. parallel to l.o.c.
5	Initial i components of velocity for A and B are $4ms^{-1}$ and $3ms^{-1}$ respectively.	B1	May be implied.
	are this and shis respectively.	M1	For using p.c.mmtm. parallel to l.o.c.
	3x4 + 4x3 = 3a + 4b	A1	Tor using p.e.minum. parametric to 1.0.e.
		M1	For using NEL
	0.75(4-3) = b - a	A1	
		M1	For attempting to find a
	a = 3	A1	Depends on all three M marks
	Final j component of velocity for A is 3ms ⁻¹	B1	May be implied
	$4 = 1_{2} = 1_{2}$	M1	For using $\tan^{-1}(v_j/v_i)$ for A
	Angle with l.o.c. is 45° or 135°	A1ft [10]	ft incorrect value of a ($\neq 0$) only
			SR for consistent sin/cos mix (max 8/10)
			3x3 + 4x4 = 3a + 4b and
			b - a = 0.75(3 - 4)
			M1 M1 as scheme and A1 for <i>both</i> equ's
			a = 4 M1 as scheme A1
			j component for A is $4ms^{-1}B1$
			Angle $\tan^{-1}(4/4) = 45^{\circ} \text{ M1}$ as scheme A1

6(i)	Initial speed in medium is $\sqrt{2}$ (= 14)	B1	
6(i)	Initial speed in medium is $\sqrt{2g \times 10}$ (= 14) $[0.125 \text{dv}/\text{dt} = 0.125 \text{g} - 0.025 \text{v}]$ $\int \frac{5 dv}{5g - v} = \int dt$	M1 M1	For using Newton's second law with a = dv/dt (3 terms required) For separating variables and attempt to integrate
	$-5 \ln(5g - v) = t (+A)$ [-5 ln35 = A] t = 5 ln {35/(49 - v)}	A1 M1 A1	For using $v(0) = 14$
	$v = 49 - 35e^{0.2t}$	M1 A1 [8]	For method of transposition AG
(ii)	$x = 49t + 175e^{-0.2t} \ (+B)$	M1 A1	For integrating to find x(t) For using limits 0 to 3 or for using
	$[x(3) = (49x3 + 175e^{-0.6}) - (0 + 175)]$ Distance is 68.0m	M1 A1 [4]	x(0) = 0 and evaluating $x(3)$

			Accept 0.8gx if gain in KE is $\frac{1}{2} 0.8(v^2 - 19.6)$	1344
4730	0 Mark S	Scheme	January 20. Tar	The start
7(i)	Gain in $EE = 20x^2/(2x2)$ Loss in GPE = $0.8g(2 + x)$	B1 B1	Accept 0.8gx if gain in KE is $\frac{1}{2}$ 0.8(v ² - 19.6)	
	$\begin{bmatrix} 1/2 & 0.8 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.8 & 0.8 & 0.0 & 0.0 & 0.0 \\ 0.8 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.8 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.8 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.8 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.8 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.8 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.8 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.8 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.8 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.8 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.8 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.8 & 0.0 & 0.0 & 0.0 & 0.$	M1 A1 [4]	For using the p.c.energy AG	
(ii)	(a) Maximum extension is 2.72m	M1 A1 [2]	For attempting to solve $v^2 = 0$	
	(b) $[19.6 - 25x = 0,$		For solving $20x/2 = 0.8g$ or for differentiating and attempting to solve $d(v^2)/dx = 0$ or $dv/dx = 0$ or for	
	$v^2 = 46.8832 - 12.5(x - 0.784)^2]$ x = 0.784 or c = 46.9	M1 A1	expressing v^2 in the form $c - a(x - b)^2$. For substituting $x = 0.784$ in the	
	$[v_{max}^2 = 39.2 + 15.3664 - 7.6832]$ Maximum speed is 6.85ms^1	M1 A1 [4]	expression for v^2 or for evaluating \sqrt{c}	
	(c) $\pm (0.8g - 20x/2) = 0.8a$	M1	For using Newton's second law (3 terms required) or $a = v dv/dx$	
	or $2v dv/dx = 19.6 - 25x$ $a = \pm (9.8 - 12.5x)$ or $\ddot{y} = -12.5y$ where $y = x - 0.784$	A1 A1		
	$[a _{max} = 9.8 - 12.5x2.72 $ or $ \vec{y} _{max} = -12.5(2.72 - 0.784]$ Maximum magnitude is 24.2ms ²	M1 A1 [5]	For substituting $x = ans(ii)(a)$ into $a(x)$ or $y = ans(ii)(a) - 0.784$ into $\ddot{y}(y)$	

4732 Probability & Statistics 1

Note: "(3 sfs)" means "answer which rounds to ... to 3 sfs". If correct ans seen to \geq 3sfs, ISW for later rounding. Penalise over-rounding only once in paper.

		1.0		0.02 0.7 0.1	
1 (i)	$0.2^2 + 0.7 \times 0.1 \times 2$	M2		0.2^2 or 0.7×0.1 :	M1
	= 0.18 AG	A1	2	no errors seen	NB $2 \times 0.9 \times 0.1 = 0.18$ M0A0
(ii)	$\frac{-0.18}{0.28 + 2 \times 0.18 + 3 \times 0.04 + 4 \times 0.01}$	M1	<u> </u>	≥ 2 terms correct (exc.)	
(11)	0.28 + 2×0.18 + 3×0.04 + 4×0.01				10 < 0.49
	= 0.8 oe	A1		5 (61 1 61	
	$0.28 + 2 \times 0.18 + 3^2 \times 0.04 + 4^2 \times 0.01$	M1		\geq 2 terms correct (exc)	$1 0^2 \times 0.49$
	- "0.8 ^{°2}	M1		dep +ve result	
	= 0.88 oe	A1	5	cao	
				$\Sigma(x-\mu)^2$: 2 terms: M1	; 5 terms M2
				$0.8^{2} \times 0.40 \pm 0.2^{2} \times 0.28 \pm$	$1.2^2 \times 0.18 + 2.2^2 \times 0.04 + 3.2^2 \times 0.01$
				SC Use original table,	
Total		8		be obe original able,	0.1.51 0.11.51
2(i)(a)	202 × 245 3		, 	correct sub in any corr	rect formula for <i>b</i>
-(-)(-)	$8736.9 - \frac{202 \times 245.3}{7}$ 1658.24	M1		÷	
	$\frac{1}{202^2}$ or $\frac{1}{1470.86}$			eg $\frac{236.8921}{210.1249}$	
	$\frac{\frac{8736.9 - \frac{7}{7}}{7300 - \frac{202^2}{7}} \text{ or } \frac{1658.24}{1470.86}$				
	= 1.127 (= 1.13 AG)	A 1	n		
		A1		must see $1.127;$	1.127 alone: M1A1
(b)	$y - \frac{245.3}{7} = 1.13(x - \frac{202}{7})$	M1			⁷² / ₇
	y = 1.1x + 2.5 (or 2.4) or $y = 1.13x + 2.43$	A1	2	2 sfs suff.	
(ii)(a)	$(1, 1(1) \times 20 + 2.5(1)) = 25.5 + 2.5(5)$	B1f		(exact: $y = 1.127399$)	. <i>x</i> + 2.50934)
(ii)(a)		B11 B1f			
(b)	$(1.1() \times 100 + 2.5()) = 112.4$ to 115.6 (a) Reliable	B1		Both reliable: B1	(a) more reliable than (b) B1
(iii)	(a) Kellable	DI		Doui ienable. Di	because (a) within data
	(b) Unreliable because extrapolated	B1	2		or (b) outside data B1
	(b) omenuole occurse entrupolated		-	Ignore extras	
Total		8	;	<u> </u>	
3(i)(a)	Geo stated	M1		or impl. by $(7/8)^n (1/8)$ o	or $(1/8)^{n}(7/8)$ alone
	$(^{7}/_{8})^{2}(^{1}/_{8})$	M1			
<u> </u>	$\frac{49}{512}$ or 0.0957 (3 sfs)	A1	3		
(b)	$(7/_8)^3$ alone	M2		or $1 - (\frac{1}{8} + \frac{7}{8 \times 1} + \frac{7}{8} + \frac{7}{8})^2$	
				one term incorrect,	
	343(0.670 (2.6)		~	$1 - ('/_8)^3$	or $(\frac{7}{8})^2$ alone: M1
	$^{343}_{512}$ or 0.670 (3 sfs) allow 0.67		3		
(ii)	Dinamial stated on invalid d	B1 M1	1	$a = b = \frac{7}{3} \frac{a}{1} \frac{b}{1} \frac{b}$	-15 m h / 1) motivating ⁿ O
(iii)	Binomial stated or implied ${}^{15}C_2(7/8){}^{13}(1/8){}^2$	M1 M1		eg by $(/_8)(/_8)$ $(a+b)$	= 15, $a,b \neq 1$), not just ^{<i>n</i>} C _{<i>r</i>}
	$C_2(7_8)$ (7_8) = 0.289 (3 sfs)		3		
Total	0.207 (3 313)	1			
4 (i)	1 2 3 4 5 or 5 4 3 2 1	M1	<i>v</i>	attempt ranks	
	3 5 4 1 2 3 1 2 5 3	A1		correct ranks	
	Σd^2 (= 32)	M1c	lep		0) or $S_{yy}=39-15^2/_5(=-6)$
	$1 - \frac{6 \times 32^{\circ}}{5(25-1)}$	M1c	•	-6/\sqrt(10\times10)	y yy SX - J
			_		
L	= - 0.6	A1	5		

January 20 January 20

(ii)	1 & 3	B1ind	ft if $-1 < (i) < -0.9$, ans 1 & 2
	Largest neg r_s or large neg r_s or strong neg corr'n or close(st) to -1 or lowest r_s	B1dep 2	NOT: furthest from 0 or closest to ±1 little corr'n most disagreement
Total		7	

5 (i) (ii)	68 75 - 59 = 16 Unaffected by outliers or extremes (allow less affected by outliers) sd can be skewed by one value		<u>3</u> 1	attempt 6 th & 18 th or 58-60, 74-76 & subtr must be from 75 – 59 NOT: by anomalies or freaks easier to calculate
(iii)	(iii) Shows each data item, retains orig data can see how many data items can find (or easier to read) mode or modal			NOT: shows freqs shows results more clearly B&W does not show freqs
	class can find (or easier to read) frequs can find mean Harder to read med (or Qs or IQR)	B1		NOT: B&W easier to compare B&W shows spread or variance or skew
	Doesn't show med (or Qs or IQR) B&W shows med (or Qs or IQR) B&W easier to compare meds	B1	2	B&W shows spread of variance of skew B&W shows highest & lowest Assume in order: Adv, Disadv, unless told Allow disadv of B&W for adv of S&L & vice versa Ignore extras
(iv)	m = 68.1 NOT by restart sd = 9.7 (or same) NOT by restart	B1 B1	2	Restart mean or mean & sd: 68.1 or 68.087 & 9.7 or 9.73 B1 only
Total		8		

Mark Scheme

January 20 January 20

6 (i) (a)	8!	M1	Allow ${}^{4}P_{4} & {}^{3}P_{3}$ instea 3! & 4! thro'out Q6 $4! \times 4! \div 8!$
	= 40320	A1 2	3! & 4! thro'out Q6
(b)	$\left {}^{4}\!/_{8} \times {}^{4}\!/_{7} \times {}^{3}\!/_{6} \times {}^{3}\!/_{5} \times {}^{2}\!/_{4} \times {}^{2}\!/_{3} \times {}^{1}\!/_{2} \right $	M1	$4! \times 4! \div 8! \qquad 4! \times 4! + 4! \times 4!$
(-)	$\times 2$	M1dep	$\times 2$ $\div 8!$
			allow 1 – above for M1 only
	$= \frac{1}{35}$ or 0.0286 (3 sfs)	A1 3	oe, eg $\frac{1152}{40320}$
(ii)(a)	4! × 4!	M1	allow $4! \times 4! \times 2$: M1
()()	= 576	A1 2	
(b)	$\frac{1}{16}$ or 0.0625	B1 1	
(c)	Separated by 5 or 6 qus stated or illus	M1	allow 5 only or 6 only or (4, 5 or 6)
(0)	Separated by 5 of 6 qus sailed of mus	1411	can be impl by next M2 or M1
	$\frac{1}{4} \times \frac{1}{4} \times 3 \text{ or } \frac{1}{16} \times 3$	M2	$3! \times 3! \times 3$
	$\binom{1}{4} \times \binom{1}{4} \times \binom{1}{6} \times \binom{1}{16} \times \binom{1}{16}$ alone or ×(2 or 6):	1112	$(3! \times 3! \text{ alone or } \times (2 \text{ or } 6); \text{ or } (3! + 3!) \times 3: \text{ M1})$
	M1)		(5.75) and (5.75) (5.75) (5.75) (5.75) (5.76)
		A1 4	(* 570)
	$^{3}/_{16}$ or 0.1875 or 0.188		correct ans, but clearly B, J sep by 4: M0M2A0
	/16 01 0.1875 01 0.188		confect ans, but clearly B, J sep by 4. MoM2A0
			1 - P(sep by 0, 1, 2, 3, (4)) M1
			1- P(sep by 0, 1, 2, 3, (4)) M1 1- $(\frac{1}{4}+\frac{1}{4}+\frac{1}{4}\times^{3}/\frac{1}{4}+\frac{1}{4}\times^{1}/\frac{1}{2})$
			$\begin{bmatrix} 1 - \binom{1}{4} + \binom{1}{4} + \binom{1}{4} + \binom{1}{4} + \binom{1}{2} + \binom{1}{4} $
			(one omit: M1)
Tatal		12	
Total		12	
7 (1)		D1	
7 (i)	Binomial	B1	D(12, 0, 1) $D2$
	n = 12, p = 0.1	B1	B(12, 0.1) : B2
	Plates (or seconds) independent oe	B1	NOT: batches indep
	Prob of fault same for each plate oe	B1 4	Comments must be in context
			Ignore incorrect or irrelevant
(ii)(a)	$0.9744 - 0.8891$ or ${}^{12}C_3 \times 0.9^9 \times 0.1^3$	M1	
	= 0.0852 or 0.0853 (3 sfs)	A1 2	
(b)	$1 - 0.2824$ or $1 - 0.9^{12}$	M1	allow $1 - 0.6590$ or $1 - 0.9^{11}$
	=0.718 (3 sfs)	A1 2	
(iii)	"0.718" and 1 – "0.718" used	B1	ft (b) for B1M1M1
	$(1-0.718)^4 + 4(1-0.718)^3 \times 0.718 + {}^4C_2(1-0.718)^2 \times 0.718^2$		
	$+ C_2(1-0.718) \times 0.718^2$	M2	M1 for any one term correct
			(eg opp tail or no coeffs)
			1 - P(3 or 4) follow similar scheme M2 or M1
			1 - correct wking (= 0.623) B1M2
	= 0.317 (3 sfs)	A1 4	cao
Total		12	

January 20. January 20.

					%
8 (i)	$\frac{1}{6} + 3 \times (\frac{1}{6})^2$	M2		or $3 \times ({}^{1}/_{6})^{2}$ or ${}^{1}/_{6} + ({}^{1}/_{6})^{2}$ or ${}^{1}/_{6} + 2({}^{1}/_{6})^{2}$ or ${}^{1}/_{6} + 4({}^{1}/_{6})^{2}$ M1	-Cloud.con
				or $\frac{1}{6} + 4(\frac{1}{6})^2$ M1	.00
	$ = {}^{1}/_{4}$	A1	3		
(ii)	¹ / ₃	B1	1		
(iii)	3 routes clearly implied	M1			
	out of 18 possible (equiprobable) routes	M1		or $\frac{1}{3} \times \frac{1}{6} \times 3$ M2	
				or $\frac{1}{3} \times \frac{1}{6} \times \frac{5}{6} \times \frac{5}{6}$ M2 or $\frac{1}{3} \times \frac{1}{6}$ or $\frac{1}{6} \times \frac{1}{6} \times \frac{3}{6}$ or $\frac{1}{3} \times \frac{1}{3} \times \frac{3}{3}$ or $\frac{1}{4} - \frac{1}{6}$	M1
				but $\frac{1}{6} \times \frac{1}{6} \times 2$ M0	
				$(\frac{1}{2})^2 \times 3 \qquad \frac{1}{4} - \frac{1}{6} \qquad \frac{1}{2} \times \frac{1}{6}$	
				$\frac{(\frac{1}{6})^2 \times 3}{\frac{1}{2}}$ or $\frac{\frac{1}{4} - \frac{1}{6}}{\frac{1}{2}}$ or $\frac{\frac{1}{2} \times \frac{1}{6}}{\frac{1}{2}}$ oe M2	
				P(4&twice) prob	
				or $\frac{P(4\&twice)}{P(twice)}$ stated or $\frac{\text{prob}}{\frac{1}{2}}$ M1	
				Whatever 1^{st} , only one possibility on 2^{nd} M2	• • • • • • • • •
				$\frac{1}{6}$, no wking M1M1A1	
	¹ / ₆			$^{1}/_{12}$, no wking M0	
		A1	3		
Total		7			

Total 72 marks

4733 Probability & Statistics 2

1		U D(000 0.005) D (4)	D1		$\mathbf{D}_{\mathbf{r}}(\mathbf{u}_{\mathbf{r}}) = \mathbf{t}_{\mathbf{r}} \mathbf{t}_{\mathbf{r}} \mathbf{t}_{\mathbf{r}}$
1		$U \sim B(800, 0.005) \approx Po(4)$	B1		Po(<i>np</i>) stated or implied
		$P(U \le 6)$	M1		Tables or formula ± 1 term, e.g. 0.7851, 0 .9489, 0.1107, not 1–
		= 0.8893	Al		Answer 0.889 or a.r.t. 0.8893
		n > 50/large, $np < 5/p$ small	B1	4	Both conditions
2		$23.625 - 23_{-2}$	M1		Standardise with \sqrt{n} , allow $\sqrt{2}$ errors
		$\frac{23.625 - 23}{5/\sqrt{n}} = 2$	A1		Equate to 2 or a.r.t. 2.00, signs correct
		$\sqrt{n} = 16$	M1		Solve for \sqrt{n} , needs Φ^{-1} , not from $/n$
			A1	4	256 only, allow from wrong signs
	(*)	(a) $e^{-0.42}$ (b) $n = 256$		-	
3	(i)		M1		Correct formula for $R = 0$ or 1
		$\begin{array}{rcl} &= 0.657 \\ \text{(b)} & 0.42 \ e^{-0.42} &= 0.276 \end{array}$	A1		P(0), a.r.t. 0.657
			A1	3	P(1), a.r.t. 0.276
	(ii)	Po(2.1):	M1		Po(2.1) stated or implied
		$1 - P(\le 3) = 1 - 0.8386$	M1		Tables or formula, e.g. 0.8386 or 0.6496 or 0.9379 or
		= 0.1614	A1	3	complement; Answer, in range [0.161, 0.162]
	(iii)		B2	2	At least 3 separate bars, all decreasing
	(111)			2	
					Allow histogram. Allow convex $P(0) \leq P(1)$ but allow convex $P(1)$ but allow
					P(0) < P(1) but otherwise OK: B1
					Curve: B1
					[no hint of normal allowed]
4	(i)	$H_0: p = 0.14$	B2		Both correct. 1 error, B1, but x or r or \overline{x} etc: 0
		$H_1: p < 0.14$			
		B(22, 0.14)	M1		B(22, 0.14) stated or implied, e.g. N(3.08, 2.6488) or Po(3.08)
		$P(\le 2) = .86^{22} + (22 \times .86^{21} \times .14) +$	A1		Correct formula for 2 or 3 terms, or $P(\le 0) = 0.036$ and CR
		$(231 \times .86^{20} \times .14^2) = 0.3877$	A1		Correct answer, a.r.t. 0.388, $or CR$ is = 0
		> 0.1	B1		Explicitly compare 0.1 or CR with 2, OK from Po but <i>not</i> from N
			M1		
		Do not reject H_0 . Insufficient	1111		Correct comparison type and conclusion, needs binomial, at least $2 \text{ types} P(<2)$
		evidence that company	A 1	0	2 terms, <i>not</i> from $P(<2)$
		overestimates viewing proportion	A1	8	Contextualised, some acknowledgement of uncertainty
					[SR: Normal: B2 M1 A0 B0 M0]
					[SR: 2-tailed, or $p > 0.14$, P(≥ 2): B1M1A2B0M1A1]
	(ii)	Selected independently	B1		Independent selection
	. ,	Each adult equally likely to be	B1	2	Choice of sample elements equally likely (no credit if not
		chosen		-	focussed on selection)
					[Only "All samples of size <i>n</i> equally likely": B1 only unless
					related to Binomial conditions]
=			D1		
5	(i)		B1		Horizontal straight line
			B1		Symmetrical U-shaped curve
			B1	3	Both correct, including relationship between the two and not
					extending beyond $[-2, 2]$, curve through $(0,0)$
	(ii)	S is equally likely to take any	B2	2	Correct statement about both distributions, $$ on their graph
		value			[Correct for one only, or partial description: B1]
					<i>Not</i> "probability of <i>S</i> is constant", etc.
		T is more likely at extremities	1		
	(:::)	T is more likely at extremities $\int a^{2} dx$	M1		Integrate $r^2 g(r)$ limits 2.2
	(iii)		M1		Integrate $x^2g(x)$, limits -2, 2
	(iii)		A1		Correct indefinite integral $[= 5x^7/448]$
	(iii)	$\int_{-\frac{5}{64}} \int_{-2}^{2} x^{6} dx = \frac{5}{64} \left[\frac{x^{7}}{7} \right]_{-2}^{2} \left[= \frac{20}{7} \right]$			Correct indefinite integral [= $5x^7/448$] 0 or 0 ² subtracted or E(X) = 0 seen, not $\int x^2 f(x) dx - \int x f(x) dx$
	(iii)	$\int_{-0^2}^{\frac{5}{64}\int_{-2}^2 x^6 dx = \frac{5}{64}\left[\frac{x^7}{7}\right]_{-2}^2 \left[=\frac{20}{7}\right]$	A1 B1		Correct indefinite integral $[= 5x^7/448]$
	(iii)	$\int_{-\frac{5}{64}} \int_{-2}^{2} x^{6} dx = \frac{5}{64} \left[\frac{x^{7}}{7} \right]_{-2}^{2} \left[= \frac{20}{7} \right]$	A1	4	Correct indefinite integral [= $5x^7/448$] 0 or 0 ² subtracted or E(X) = 0 seen, not $\int x^2 f(x) dx - \int x f(x) dx$

Mark Scheme

				cheme January 20.
				N. 72 M. 4
	4733		Mark So	cheme January 20. North States
6	(i)	$50.0 \pm 1.96 \sqrt{\frac{20.25}{81}} = 50.0 \pm 0.98$	M1	50.0 ± $z\sqrt{(1.96/81)}$, allow one sign only, allow $\sqrt{\text{errors}}$
		1 01	B1	z = 1.96 in equation (<i>not</i> just stated) Both critical values, min 4 SF at some stage (if both 3SF, A1)
		= 49.02, 50.98 $\overline{W} < 49.02$ and $\overline{W} > 50.98$	A1A1	CR, allow $\leq \geq$, don't need \overline{W} , $$ on their CVs, can't recover
		W < 49.02 and W > 50.98	A1√ 5	[Ans 50 ± 0.98: A1 only] [SR: 1 tail, M1B0A0; 50.8225 or 49. 1775: A1]
	(ii)	50.98-50.2 1.50	M1	Standardise one limit with same SD as in (i)
	, ,	$\frac{50.98 - 50.2}{0.5} = 1.56$	A1	A.r.t. 1.56, allow – Can allow \sqrt{here}
			Al	A.r.t. -2.36 , allow + J if very unfair
		$\frac{49.02 - 50.2}{0.5} = -2.36$	M1 A1 5	Correct handling of tails for Type II error
		$\Phi(1.56) - \Phi(-2.36) = 0.9315$	AI 5	Answer in range [0.931, 0.932] [SR 1-tail M1; -1.245 or 2.045 A1; 0.893 or 0.9795 A1]
	(iii)	It would get smaller	B1 1	No reason needed, but withhold if definitely wrong reason seen.
	()			Allow from 1-tail
7	(i)	$\hat{\mu} = \bar{t} = 13.7$	B1	13.7 stated
		$\frac{12657.28}{137^2}$ 137 ² [-1008]: $\times \frac{64}{12}$	M1	Correct formula for biased estimate
		$\frac{12657.28}{64} - 13.7^2 [= 10.08]; \times \frac{64}{63}$	M1	$\times \frac{64}{63}$ used, or equivalent, can come in later
		= 10.24	A1	Variance or SD 10.24 or 10.2
		$H_0: \mu = 13.1, H_1: \mu > 13.1$	B2	Both correct. [SR: One error, B1, but x or t or \overline{x} or \overline{t} , 0]
		$\frac{13.7 - 13.1}{\sqrt{10.24 + 64}} = 1.5 \text{ or } p = 0.0668$	M1	Standardise, or find CV, with $\sqrt{64}$ or 64
		√10.24/64	A1	$z = a.r.t. 1.50, or p = 0.0668, or CV 13.758 [\sqrt{on z}]$
		1.5 < 1.645 or 0.0668 > 0.05	B1	Compare $z \& 1.645$, or $p \& 0.05$ (must be correct tail), or $z = 1.645 \& 13$ with CV
		Do not reject H ₀ . Insufficient	M1	Correct comparison & conclusion, needs 64, <i>not</i> μ = 13.7
		evidence that time taken on average is greater than 13.1 min	A1 11	Contextualised, some acknowledgement of uncertainty
	 (ii)	Yes, not told that dist is normal	B1 1	[13.1 – 13.7: (6), M1 A0 B1 M0] Equivalent statement, <i>not</i> " <i>n</i> is large", don't need "yes"
8	(i)	N(14.7, 4.41)	M1	Normal, attempt at <i>np</i>
	(-)	Valid because	A1	Both parameters correct
		np = 14.7 > 5; nq = 6.3 > 5	B1	Check $np > 5$; If both asserted but not both
		$1 - \Phi\left(\frac{15.5 - 14.7}{\sqrt{4.41}}\right) = 1 - \Phi(0.381)$	B1	$nq \text{ or } npq > 5 \qquad \downarrow 14.7 \text{ and } 6.3 \text{ seen: B1 only}$
		$\sqrt{4.41}$	M1	[Allow " <i>n</i> large, <i>p</i> close to $\frac{1}{2}$ "]
		= 1 - 0.6484	Al	Standardise, answer < 0.5, no \sqrt{n} z, a.r.t. 0.381
		= 0.3516	A1 7	Answer in range [0.351, 0.352] [Exact: M0]
	(ii)	$\bar{K} \sim N(14.7, 4.41/36)$	M1	Normal, their <i>np</i> from (i)
		$[= N(14.7, 0.35^2)]$	A1√	Their variance/36
		Valid by Central Limit Theorem as 36 is large	B1	Refer to CLT or large $n (= 36, not 21)$, or " $K \sim N$ so $\overline{K} \sim N$ ", not same as (i), not $np > 5$, $nq > 5$ for \overline{K}
		-	M1	Standardise 14.0 with 36 or $\sqrt{36}$
		$\Phi\left(\frac{14.0 + \frac{1}{72} - 14.7}{\sqrt{4.41/36}}\right) = \Phi(-1.96)$	A1	cc included, allow 0.5 here, e.g. $14.5 - 14.7$
		= 0.025	A1	z = -1.96 or -2.00 or -2.04 , allow + if answer < 0.5
		- 0.025	A1 7	0.025 or 0.0228
	00.	D(75(0.7)) = N(500.2, 150.74)	N/1N/1 A 1	[0.284 loses last 2] [Po(25.2) etc: probably 0]
	OR:	$B(756, 0.7) \approx N(529.2, 158.76)$	M1M1A1 B1	×36; N(529.6,); 158.76 CLT as above, or $np > 5$, $nq > 5$, can be asserted here
		$\Phi\left(\frac{504.5 - 529.2}{\sqrt{158.76}}\right) = \Phi(-1.96)$	M1	Standardise 14×36
			Al	cc correct and \sqrt{npq}
		= 0.025	A1	0.025 or 0.0228

4734 Probability & Statistics 3

1	T has a Poisson distribution $E(T)=28\times0.75+4\times6.4$ $= 46.6$ Var(T)=46.6	$B1$ $M1$ $A1$ $B1\sqrt{4}$	From sum of Poissons Ft E(<i>T</i>) only if Poisson
2 (i) (ii)	Use F(Q ₃)=0.75 or $\int_{Q_3}^{\infty} \frac{1}{5} e^{-\frac{1}{4}u} du = 0.25$ Solve to obtain Q ₃ = 4.65 AEF eg 4ln(16/5) f(u) = $\begin{cases} \frac{1}{5} e^{u} & u < 0, \\ \frac{1}{5} e^{-\frac{1}{4}u} & u \ge 0. \end{cases}$	M1 M1A1 3 B1 B1 2	M1 for solving similar eqn A0 for \geq 4.65
3 (i) (ii)	Use $28 \pm zs$ z=2.326 $s^2 = 28 \times 72/1200$ (25.0, 31.0) $z \times 2.326 \sqrt{(0.28 \times 0.72/n)} \le 0.05 \text{ AEF}$ Solve to obtain <i>n</i> Smallest <i>n</i> = 1745 e.g. Variance is an approximation	M1 B1 B1 A1 4 M1 M1 A1 B1 4	Accept s=c/ \sqrt{n} for M1 Accept 0.28 with corresponding s Or 1199 Accept (25, 31) Or = or \geq Solving similar equn Accept 1746 ,1750 Or normal is approx or Or p only an estimate
4 (i) (ii) (iii)	$c = 1/20$ $\int_{25}^{45} \frac{400\sqrt{x} - 240}{20} dx$ $= \left[\frac{40}{3}x^{3/2} - 12x\right]$ $= 2118(\pounds)$ $400\sqrt{x} - 240 > 2000, x > 31.36$ $P(x > 31.36) = (45 - 31.36)/20$ $= 0.682$	B1 1 M1 A1 A [`] 1 3 M1 M1 A1 3	Correct indefinite integral 2120 or better than 2118 Or 31.4 cao

4734	4 Mark Scheme	Mark Scheme						
5 (i)	$H_0: \mu_2 = \mu_1, H_1: \mu_2 > \mu_1$, where μ_1 and μ_2 are the mean concentrations in the lake before and after the spillage respectively	B1 B1 2	Www.mymainschoud January 20. Mainschoud For both hypotheses Allow in words if population mean used.					
(ii)	$ \overline{X}_{2} - \overline{X}_{1} \ge zs z=1.645 s=0.24\sqrt{(1/5+1/6)} \ge 0.2391 $	M1 A1 B1 A1 4	Accept >, =, <. \leq , ts Or >; 0.239					
(iii)	$P(\overline{X}_2 - \overline{X}_1 < 0.2391)$ $z = [0.2391 - 0.3]/s$ $p=0.3376$ This is a large probability for this error	M1 M1 A1 B1 4	May be implied ART 0.337 or 0.338 Relevant comment					
6 (i)	Use $B \sim B(29, 0.3)$, $G \sim B(26, 0.2)$ E(F)=29×0.3+26×0.2=13.9 Var(F) = 29×0.3×0.7+26×0.2×0.8=10.25	M1 M1A1 M1A1 5						
(ii)	B: $np = 8.7$, $nq=20.3$ G: $np = 5.2$, $nq=20.8$ All exceed 5, so normal approximation valid for each $F \sim N(13.9, 10.25)$ (approximately) (Requires P($F \le n$) = 0.99) $[n + 0.5 - 13.9]/\sqrt{(10.25)}$; = 2.326, their 10.25	B2 M1√ M1B1 A1 M1	Must check numerically B1 for checking one distribution Use normal. May be implied Standardise M0 if variance has divisors cc Solving similar					
	n = 20.85 Need to have 21 spares available SR Using B(55, 0.2527): B1; M1(N(13.9, 10.39); M1B1M1A0 (Max 5/8)	A1 8	No cc, lose last A1 (n = 22) Wrong cc, lose A1A1					

4734	Mark So	cheme	January 20. Nathscioud.co.
7 (i)	Requires population of (2nd mark – 1st mark) to be normally distributed $H_0: \mu_d = 0, H_1: \mu_d > 0$ $T_2 - T_1: -1 -1 2 0 -2 2 3 2$ $\overline{d} = 0.625, s^2 = 3.411(3^{23}/_{56} \text{ or }^{191}/_{56})$ Use 2.998 EITHER: $t = 0.625/\sqrt{(3.411/8)}$ = 0.957 OR: CV(CR), $\overline{d} \ge 2.998\sqrt{3.411/8}$ = 1.958 EITHER 0.957<2.998 OR 0.625 < 1.958 Do not reject H_0 , there is insufficient evidence of improvement	B1 M1 B1B1 B1 M1 A1 M1 A1 M1 A1 M1 8	M0 if clearly z With comparison and conclusion
(ii)	Use $E(X_2 - X_1 + k) = 0.625 + k$ Requires $(0.625+k) / \sqrt{(3.411/8)} \ge 2.998$ Giving $k \ge 1.33$ Increase each mark by 2	$\begin{array}{c}\\ M1\\ A1\\ A1 3 \end{array}$	Allow 1.33
8 (i)	Mean= $(20+16+9)/75$ = 0.6 3p = 0.6, p= 0.2 AG	M1 A1 A1 3	
(ii)	H ₀ : B(3,p) fits the data (H ₁ : B(3,p) does not fit the data) Expected values 38.4 28.8 7.2 0.6 Combine last two cells $\chi^2 = 5.6^2/38.4 + 8.8^2/28.8 + 3.2^2/7.8$ = 4.818 4.818 > 3.841 Reject H ₀ and conclude that there is insufficient evidence that B(3p) fits the data.	$ \begin{array}{c} \hline B1 \\ M1 \\ A1 \\ B1 \\ M1 \\ A1 \\ A1 \\ B1 \\ M1 \\ B1 \\ M1 \\ 10 \\ \end{array} $	Or: X~B(3,p) or B(3,0.2) Not 'Data fits model' Use B(3,0.2)×75 At least 2 correct All correct With one correct At least 2 correct Ft E values Accept 4.82 cao ft 4.818 SR1 If cells not combined: B1M1A1A1B0M1A1A0B1(5.991)M1 SR2:E-values rounded :B1M1A1A1 B1M1A1A0(4.865)B1M1
(iii)	2.74 < 3.841, accept H ₀ conclude that B(6, <i>p</i>) fits the data	B1 1	Accept with no reason if evidence of method in (ii)

4736 Decision Mathematics 1

1	(i)	A	В	С	D		M1	A, B and C correct for first pass		
		614	416	1	198	(<i>A</i> =198)	A1	D = 198 on first pass		
		198	891	2	693	(<i>A</i> =693)	M1	sca at second and third passes		
		693	396	3	297		A1	Second and third passes correct	[4]	
	(ii)	0					B1	0	[1]	
	(iii)	To make the	he algor	ithm ter	minate		B1	So that it does not get stuck in a loop	[1]	
	Total = 6									

2	(i)	eg		Graph need not be simple or planar	
		•	M1	A graph with five vertices and at least three correct vertex orders	
			A1	A graph with five vertices of orders 1, 2, 2, 3, 4	
		\mathbf{V}			[2]
	(ii)	Semi-Eulerian	M1	Unless their graph was not connected, in which case the answer is 'neither'	
		It has <u>exactly</u> two odd nodes	A1	(Unless their graph was not connected, in which case follow this through)	[2]
	(iii)	A tree with five vertices would only have four arcs, but this graph has six Or A tree must have at least two vertices	B2	Give B1 for an incomplete reason, eg 'too many arcs' or 'it has a cycle'	
		of order 1			[2]
				Total =	6

ANSWERED ON INSERT

3	(i)	AB = 9 $DF = 14$ $BD = 16$		M1 A1	Not selecting <i>CF</i> (working seen on list) Selecting correct arcs (working seen on list)	
		CD = 18 $FG = 20$ $CF = 22$ $EG = 23$ $EF = 26$		M1 A1	A spanning tree drawn Correct (minimum) spanning tree drawn	
		$\frac{27}{AC} = 27$ $\frac{DE}{DE} = 28$ $\frac{AD}{DG} = 31$	Total weight = 100	B1	100 cao	
		<u>BE = 37</u>				[5]

4736	6 Marl	< Sche	eme January 20	Smathsc
ii)	Delete <i>EG</i> from spanning tree 100 - 23 = 77 Two shortest arcs from <i>E</i> are <i>EG</i> and <i>EF</i>	B1	eme January 20 Follow through from part (i) if possible Weight of MST on reduced network	
	77 + 23 + 26 = 126 Lower bound = 126	M1 A1	Adding two shortest arcs to MST 126 cao	[3]
(iii)	A - B - D - F - G - E – stall Misses out vertex C	M1 A1	A - B - D - F - G - E <u>Cannot continue</u> because <i>B</i> , <i>D</i> and <i>F</i> have already been visited	[2]
iv)	B - A - C - D - F - G - E - B Upper bound = 148	M1 A1 B1	Tour starts $B - A - C - D - F -$ Correct tour, starting and ending at B 148 cao	[3]
(v)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1 A1 B1	 (Accept correct working starting from <i>G</i>, if seen) At least three sets of temporary labels correct, with no extras Temporary labels all correct, with no extras Permanent labels correct 	
	$C \begin{bmatrix} 4 & 27 \\ 27 \end{bmatrix} F \begin{bmatrix} 5 & 39 \\ 39 \end{bmatrix}$ Weight = 56 Route = $A - B - D - G$	B1 B1 B1	Order of labelling (correct or follow through their permanent labels) 56 cao <i>A</i> - <i>B</i> - <i>D</i> - <i>G</i> cao	[4]
(vi)	A, B, C and G are odd $AB = 9$ $AC = 27$ $AG = 56$ $CG = \underline{42}$ $BG = \underline{47}$ $BC = \underline{34}$ 51 74 90 Repeat AB and CG (C - F - G) = 51	B1 M1 A1	Identifying or using A, B, C, G (seen)At least one correct pairing seen or totalseen (not just six weights)All three totals correct, or explanation ofhow it is known that other pairings are toolong	

ANSWERED ON INSERT

4	(i)	8	B1	cao	[1]
	(ii)	1 comparison and 1 swap	B1	1 and 1	[1]
	(iii)	76 65 21 13 88 62 67 28 34	B1	Correct list (complete)	
		2 comparisons and 1 swap	B1	2 and 1	[2]
	(iv)	C S		Underlined values correct in 3 rd and 4 th	
		<u>76 65 21 13</u> 88 62 67 28 34 1 0	M1	passes, values not underlined may be left	
		<u>88 76 65 21 13</u> 62 67 28 34 4 4		blank	
			M1	Similarly for 5 th and 6 th passes, follow	
		<u>88 76 65 62 21 13</u> 67 28 34 3 2		through slips in previous passes	
		88 76 67 65 62 21 13 28 34 5 4	A1	Similarly for 7 th and 8 th passes, but cao	[3]
				(Dependent on both M marks)	
		88 76 67 65 62 28 21 13 34 3 2	M1	Reasonable attempt at Comp and Swap	
		88 76 67 65 62 34 28 21 13 4 3	A1	1 4 3 5 3 4 cao in figures	
			A1	0 4 2 4 2 3 cao in figures	[3]

4736

4736	S Mark	< Sche	eme January 2	nymathso	Anaths -
(v)	Shuttle sort uses 23 comparisons and 17 swaps		Follow through their totals if possible		.oud.co
	Shuttle sort is more efficient because	M1	Choosing shuttle sort with a reason or with totals seen (here)		
	although it uses the same number of swaps as bubble sort it uses fewer comparisons	A1	Correct reason stated (comparisons and swaps both compared, in words)	[2]	
			Total =	12	

5	(i)	Katie must spend at least 8 minutes preparing	M1	Identifying why there is less than 60	
		the first batch of cookies so she has at most		minutes of baking time (or seeing 52)	
		52 minutes of baking time.	A1	Explaining why 4 is the greatest possible	
		$52 \div 12 = 4.3$, hence at most 4 batches		number of batches	[2]
	(ii)	The last batch takes 12 minutes to bake,		Explaining why total time for preparation	
		so Katie has (at most) 48 minutes of	B1	cannot exceed 48 minutes	
		preparation time			
			D1		
		$8x + 12y + 10z \le 48 \Longrightarrow 4x + 6y + 5z \le 24$	B1	$8x + 12y + 10z \le 48$ seen or explicitly	
		as given	D1	referred to	[2]
	(iii)	Must be integer valued	B1	Integers	[1]
	(iv)	P = 5x + 4y + 3z	B1	5x + 4y + 3z or any positive multiple of	
				this	
		Assumes that she sells all the cookies	B1	Assumes she sells them all	
		(batches) that she makes			[2]
	(v)	P x y z s t 1 -5 -4 -3 0 0 0			
			M1	Correct use of slack variable columns	
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Al	Objective row correct (cao)	[12]
		0 4 0 5 0 1 24	A1	Constraint rows correct (cao)	[3]
		$4 \div 1 = 4, 24 \div 4 = 6, 4 < 6$		Working need not be seen	
		$4 \div 1 - 4, 24 \div 4 - 6, 4 < 6$ Pivot on the 1 in the <i>x</i> column	B1	Correct pivot choice (row 2) (cao)	
		Fivot on the 1 m the x column			
		Pxvzst		Follow through their tableau and pivot	
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$		choice, if possible	
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M1	sca pivoting $(x, t \text{ cols}, P \text{ not decreased})$	
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	A1	Correct tableau (final column contains no negative values)	
		Row $1 = R1 + 5 \times R2$		liegative values)	
			B1	Showing valid method,	
		$Row 2 = R2 \div 1$		may imply row 2	
		$Row 3 = R3 - 4 \times R2$			
				Follow through their tableau, if reasonable	[4]
		x = 4, y = 0, z = 0, P = 20		(non-negative variables)	
		x = 4, y = 0, z = 0, T = 20			
		Katie should make 4 batches of plain	M1	Reading off values from tableau	
		cookies, and no chocolate chip or fruit		(<u>may be implied</u> from answer)	
		cookies, to give a profit of £20.	A1	Interpretation: 4 batches of plain cookies	
				(may imply none of others)	
			A1	Interpretation: £20	
					[3]

4737 Decision Mathematics 2

(i)	Stage	State	Action	Working	Maximin		Answered on insert	
	Siuge	0	0	10	10			
	1	1	0	11	10			
	-	2	0	14	14			
		3	0	15	15			
		0	0	min(12, 10)=10	-			
			2	min(10, 14) = 10	10	M1	Transferring maximin values from stage 1	
			0	min(13, 10)=10			correctly	
	2	1	1	min(10, 11)= 10		M1	Completing working column for stage 2 (method)	
			2	min(11, 14)= 11	11			
			1	min(9, 11)=9	_	M1	Calculating maximin values for stage 2 (method)	
		2	2	min(10, 14)=10	10	1011	Curculating maximin values for stage 2 (method)	
			3	min(7, 15)=7		A1	Maximin values correct for stage 2 (cao)	
		3	1	min(8, 11) = 8	10	AI	Waxinini values correct for stage 2 (cab)	
			3	$\frac{\min(12, 15)=12}{\min(15, 10)=10}$	12	1.1		
	3	0	0	min(13, 10)=10 min(14, 11)=11		M1	Transferring maximin values from stage 2	
	5	0	2	min(14, 11) = 11 min(16, 10) = 10			correctly	
			3	min(13, 12)=12	12	A1	Working column for stage 3 correct (cao)	
								[
(ii)	Maximii	1 value =	= 12			B1	12 (cao)	\vdash
				(1; 3) - (2; 3) - (3: 0)	M1	Route, or in reverse, follow through their table if	
			(*,*)		- , ~,		possible, condone omission of $(0; 0)$	1
						A1	Correct route, including (0; 0) (cao)	[3
							Total =	9

January 20. January 20.

(i)			Answered on insert	
	4+3-2+8-2+7 = 18 litres per second	M1 A1	Imply method mark from 18, 20 or 22 cao	2
(ii)	3 litres per second flow out of <i>B</i> (arc <i>BD</i>) so only 2 litres per second can enter <i>B</i> from <i>E</i> and only 1 litre per second can enter <i>B</i> from <i>S</i> .	B1	At B: 3 out and 1 + 2 in	
	At least 4 litres per second flow out of E to G , 2 litres per second from E to B and 2 litres per second from E to H , so 8 litres per second must flow into E from C .	B1	At <i>E</i> : (at least) 4 + 2 + 2 out	
	8 litres per second flows from C to E and at most 11 litres per second enters C from S , so at most 3 litres per second flows from C to H . Also, 2 litres per second flow from E to H so the most that can enter H is 5 litres per second. But at least 5 litres	M1	Considering <i>C</i> to show flow in <i>CH</i> is at most 3 Must explicitly refer to ≤ 3 , or $2 \leq \text{flow} \leq 3$, not just stating 3	
	per second leave H along HT , hence the flow in HT is 5 litres per second.	A1	At <i>H</i> : 2 + 3 in	[4]
(iii)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M1 A1	Substantially correct attempt (at least 12 correct) (Not shown as excess capacities and potential backflows) All correct (cao)	
	C 3 H Flow augmenting route: S A D F T or S A D G T Cut: X = {S, B}, Y = {A, C, D, E, F, G, H, T}	B1 B1	Either of these (correct) flow augmenting routes	[4]
	Or $X = \{S, A, B\}, Y = \{C, D, E, F, G, H, T\}$		Either of these (correct) cuts described in any way, or marked clearly on diagram	[']
(iv)	<i>B</i> would have at most 3 litres per second entering it and at least 5 litres per second leaving.	M1 A1	Identifying that problem is at <i>B</i> A correct explanation	[2]

4737	Mark Schem	e January 20.	AL ANSIES
$\begin{array}{c c} 4 & (\mathbf{i}) \\ & & \\$	B1 B1	Bipartite graph correct Incomplete matching correct (clearly shown, or shown on a separate bipartite graph)	
(ii) $E-P-A-R-B-S$ Anya = restaurant review Ben = sports news Connie = theatre review Derek = weather report Emma = problem page	M1 A1 B1	A valid alternating path from <i>E</i> to <i>S</i> , written out This path written out (not just shown on diagram) A = R $B = S$ $C = T$ $D = W$ $E = P(cao)$	[2]
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	X 50 50 50 50 50 50 50 50 50 50	Adding a dummy column of equal 'costs' of at least 60 minutes	
Seduce rows 5 5 0 6 7 9 1 0 1 2 2 8 5 3 0 6 8 8 6 2 0 6 4 7 4 4 0 6 7 7 7 5 0 5 6 9	M1	Substantially correct attempt at reducing rows (at most one error)	
Then reduce columns 4 5 0 4 5 2 0 0 1 0 0 1 4 3 0 4 6 1 5 2 0 4 2 0 3 4 0 4 5 0 3 4 0 4 5 0 6 5 0 3 4 2	M1 A1	Substantially correct attempt at reducing columns (at most one error) Correct reduced cost matrix, with rows reduced first (cao)	
			[4]

7 Mari	k Scheme	January 20	Paths
Cross out 0's using 3 (minimum number of) lines 4 5 0 4 5 2 0 0 1 0 0 1 4 3 0 4 6 1 5 2 0 4 2 0 3 4 0 4 5 0 6 5 0 3 4 2		e January 20	
Augment by 2 2 3 0 2 3 2 0 0 3 0 0 3 2 1 0 2 4 1 3 0 0 2 0 0 1 2 0 2 3 0 4 3 0 1 2 2 Cross out 0's using 4 (minimum number of) lines 2 3 0 2 3 2 0 0 3 0 0 3 2 1 0 2 4 1 3 3 1 0 2 3 2 3 3 1 1 0 2 4 1 3	M1 A1	Follow through their reduced cost matrix for crossing through 0's and augmenting (without errors) Augment by 2 in a single augmentation (cao) Alternative $\boxed{\begin{array}{ccccccccccccccccccccccccccccccccccc$	
4 3 0 1 2 2 Augment by 1 1 2 0 1 2 2 0 0 1 2 2 0 0 1 2 2 0 0 1 2 2 0 0 1 3 1 3 0 1 2 0 3 0 1 2 0 3 2 0 0 1 2 3 2 0 0 1 2 3 2 0 0 1 2		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	M1 A1	Follow through their matrix for crossing through 0's and augmenting (correct for theirs) (Either) correct final matrix (cao)	
1 2 0 1 2 2 0 0 4 0 0 4 1 0 0 1 3 1 3 0 1 2 0 1 3 0 1 2 0 1 3 2 0 1 2 0 3 2 0 0 1 2		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	[4]
Feremy Kath Laura Mohammed Ollie Sports Problems Restaurant Weather Theatre 51 + 53 + 55 + 57 + 56 = 272 $272 \times \pm 0.25 = \pm 68$	B1 M1 A1	J = S $K = P$ $L = R$ $M = W$ $O = TCorrect method£68 (cao) with units$	

Mark Scheme

473	37 Mark	< Scher	me January 20	naths o
(i)	5	B1	5	
	$(10 - 4) \div 2$ = 3	M1 A1	3 or 7 3	[3]
(ii)	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	M1 M1 A1	Calculating row minima Calculating col maxima (or equivalent) Sanjeev or S (not just -2 or identifying row)	
	Play-safe for cricket club (cols) is Fiona	Al	Fiona or F (not just 0 or identifying column)	
	Not stable because $-2 \neq 0$	B1	Any correct explanation	[5]
(iii)	Fiona Ursula	B1 B1	Follow through their play-safe strategies if possible F U	[2]
(iv)	Sanjeev's row dominates Tom's row	B1	This or any equivalent statement about Tom and Sanjeev (note: Tom is named in the question)	
	Doug Fiona's column dominates Doug's (once Tom's	M1	Doug	
	row has been removed)	A1	This or any equivalent statement about Doug and Fiona	[3]
(v)	E: 4p - 6(1-p) = 10p - 6 F: -2p	M1	Follow through their choice from part (iv) Both expressions seen in any form (note: <i>D</i> gives $2(1-p) = 2 - 2p$)	
	10p - 6 = -2p $\Box p = 0.5$	A1	p = 0.5 (cao)	[2]
(vi)	Delete T row 0 4 -2 2 -6 $0Multiply entries by -1 to show scores for Cricket$			
	$\begin{array}{c} \text{club} \\ 0 & -4 & 2 \\ -2 & 6 & 0 \end{array}$	B1	Delete T row and multiply entries by -1	
	Add 4 to make entries non-negative 4 0 6 2 10 4	B1	Add 4 to make entries non-negative	
	Choose Doug with probability x , Euan with probability y and Fiona with probability z .	B1	Identifying meaning of x, y, z or implied by reference to S for $4x + 6z$ and U for $2x + 10y + 4z$	
	If Sanjeev plays, expected score = $4x + 6z$ If Ursula plays, expected score = $2x + 10y + 4z$			[3]
(vii)	$z = \frac{5}{6}$ \Box maximum value for $m = 5$	M1		
	Hence, maximum value for $M = 1$	A1		[2]

Grade Thresholds

Advanced GCE Mathematics (3890-2, 7890-2) January 2009 Examination Series

Unit Threshold Marks

78	92	Maximum Mark	Α	В	С	D	E	U
4721	Raw	72	57	50	43	37	31	0
4/21	UMS	100	80	70	60	50	40	0
4722	Raw	72	59	51	44	37	30	0
4722	UMS	100	80	70	60	50	40	0
4723 R	Raw	72	55	48	41	34	28	0
4725	UMS	100	80	70	60	50	40	0
4724	Raw	72	62	54	46	38	31	0
4724	UMS	100	80	70	60	50	40	0
4725	Raw	72	57	49	41	34	27	0
4725	UMS	100	80	70	60	50	40	0
4726	Raw	72	49	44	39	34	30	0
4720	UMS	100	80	70	60	50	40	0
4727	Raw	72	54	47	40	33	27	0
4/2/	UMS	100	80	70	60	50	40	0
4728	Raw	72	62	54	46	38	30	0
4720	UMS	100	80	70	60	50	40	0
4729	Raw	72	61	51	41	31	21	0
4723	UMS	100	80	70	60	50	40	0
4730	Raw	72	57	48	40	32	24	0
4730	UMS	100	80	70	60	50	40	0
4732	Raw	72	58	50	43	36	29	0
47.52	UMS	100	80	70	60	50	40	0
4733	Raw	72	58	49	41	33	25	0
4733	UMS	100	80	70	60	50	40	0
4734	Raw	72	50	43	37	31	25	0
4/34	UMS	100	80	70	60	50	40	0
4736	Raw	72	58	51	45	39	33	0
4/30	UMS	100	80	70	60	50	40	0
4737	Raw	72	60	53	46	39	33	0
4/3/	UMS	100	80	70	60	50	40	0

www.mymathscioud.com

Specification Aggregation Results

	Maximum Mark	Α	В	С	D	E	U
3890	300	240	210	180	150	120	0
3891	300	240	210	180	150	120	0
3892	300	240	210	180	150	120	0
7890	600	480	420	360	300	240	0
7891	600	480	420	360	300	240	0
7892	600	480	420	360	300	240	0

www.mymathscloud.com

Overall threshold marks in UMS (ie after conversion of raw marks to uniform marks)

The cumulative percentage of candidates awarded each grade was as follows:

	Α	В	С	D	E	U	Total Number of Candidates
3890	24.1	50.4	72.7	85.8	95.1	100	960
3892	28.1	59.4	78.1	90.6	93.8	100	32
7890	26.8	58.1	84.4	92.2	96.6	100	205
7892	33.3	75.0	91.7	91.7	100	100	12

For a description of how UMS marks are calculated see: http://www.ocr.org.uk/learners/ums_results.html

Statistics are correct at the time of publication.

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

