Mathematics

Advanced GCE A2 7890-2

Mark Schemes for the Units

January 2009

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, GCSEs, OCR Nationals, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2009
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 0DL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

CONTENTS

Advanced GCE Mathematics (7890)
Advanced GCE Pure Mathematics (7891)
Advanced GCE Further Mathematics (7892)
Advanced Subsidiary GCE Mathematics (3890)
Advanced Subsidiary GCE Pure Mathematics (3891)
Advanced Subsidiary GCE Further Mathematics (3892)

MARK SCHEMES FOR THE UNITS

Unit/Content Page
4721 Core Mathematics 1 1
4722 Core Mathematics 2 5
4723 Core Mathematics 3 8
4724 Core Mathematics 4 11
4725 Further Pure Mathematics 1 15
4726 Further Pure Mathematics 2 18
4727 Further Pure Mathematics 3 21
4728 Mechanics 1 25
4729 Mechanics 2 28
4730 Mechanics 3 30
4732 Probability \& Statistics 1 34
4733 Probability \& Statistics 2 38
4734 Probability \& Statistics 3 40
4736 Decision Mathematics 1 43
4737 Decision Mathematics 2 47
Grade Thresholds 53

4721 Core Mathematics 1

10(i)	$\frac{d y}{d x}=2 x+1$	$\begin{array}{ll} \text { M1 } & \\ \text { A1 } & 2 \end{array}$	Attempt to differentiate y cao
(ii)	$\text { Gradient of normal }=-\frac{1}{5}$	B1 ft	ft from a non-zero numerical value in (i)
	When $x=2, y=6$	B1	May be embedded in equation of line
	$y-6=-\frac{1}{5}(x-2)$		Equation of line, any non-zero gradient, their y coordinate
	$x+5 y-32=0$	A1 4	Correct equation in correct form
(iii)	$\begin{aligned} & x^{2}+x=k x-4 \\ & x^{2}+(1-k) x+4=0 \end{aligned}$		Equating $y_{1}=y_{2}$
	One solution $\Rightarrow b^{2}-4 a c=0$	DM1	Statement that discriminant $=0$
	$(1-k)^{2}-4 \times 1 \times 4=0$	DM1	Attempt (involving k) to use $\mathrm{a}, \mathrm{b}, \mathrm{c}$ from their equation
	$(1-k)^{2}=16$		Correct equation (may be unsimplified)
	$1-k= \pm 4$	A1	Correct method to find k, dep on $1^{\text {st }} 3 \mathrm{Ms}$
			Both values correct

4722 Core Mathematics 2

1 (i) $\int\left(x^{3}+8 x-5\right) \mathrm{d} x=\frac{1}{4} x^{4}+4 x^{2}-5 x+c$
M1 Attempt integration - increase in power for at least 2 terms
A1 Obtain at least 2 correct terms
A1 3 Obtain $\frac{1}{4} x^{4}+4 x^{2}-5 x+c$ (and no integral sign or $\mathrm{d} x$)
(ii) $\int 12 x^{\frac{1}{2}} \mathrm{~d} x=8 x^{\frac{3}{2}}+c$

B1 State or imply $\sqrt{x}=x^{\frac{1}{2}}$
M1 Obtain $k x^{\frac{3}{2}}$
A1 3 Obtain $8 x^{\frac{3}{2}}+c$ (and no integral sign or $\mathrm{d} x$)
(only penalise lack of $+c$, or integral sign or $\mathrm{d} x$ once)

6

2 (i) $\begin{aligned} 140^{\circ} & =140 \times \frac{\pi}{180} \\ & =\frac{7}{9} \pi\end{aligned}$
(ii) $\operatorname{arc} A B=7 \times \frac{7}{9} \pi$
$=17.1$
chord $A B=2 \times 7 \sin \frac{7}{18} \pi=13.2$
hence perimeter $=30.3 \mathrm{~cm}$

M1
A1 2 Obtain $\frac{7}{9} \pi$, or exact equiv

M1 Attempt arc length using $r \theta$ or equiv method
A1 $\sqrt{ } \quad$ Obtain 17.1, $\frac{49}{9} \pi$ or unsimplified equiv
M1 Attempt chord using trig. or cosine or sine rules
A1 4 Obtain 30.3, or answer that rounds to this

7

A1 \quad Obtain $\pm\left(16 x-\frac{1}{5} x^{5}\right)$
Obtain correct $\frac{1}{5} x^{5}+3 x$

Obtain $24 \frac{4}{5}$

7 Obtain $51 \frac{1}{5}$ aef such as $51.2, \frac{256}{5}$

Attempt subtraction, either order

Attempt integration

Attempt integration - increase of power for at least 1 term

Use limits (any two of $-2,0,2$), correct order/subtraction

State or imply correct area of rectangle
Attempt correct method for shaded area

Obtain $16-x^{4}\left(\right.$ not from $\left.x^{4}+3=19\right)$

$$
\begin{aligned}
& =\left(32-\frac{32}{5}\right)-\left(-32-\frac{32}{5}\right) \\
& =51 \frac{1}{5}
\end{aligned}
$$

Use limits - correct order / subtraction
Obtain $\pm 51 \frac{1}{5}$
Obtain $51 \frac{1}{5}$ only, no wrong working

5 (i) $\frac{T A}{\sin 107}=\frac{50}{\sin 3}$
Attempt use of correct sine rule to find $T A$, or equiv
A1 2 Obtain 914, or better
(ii) $T C=\sqrt{914^{2}+150^{2}-2 \times 914 \times 150 \times \cos 70}$

$$
=874 \mathrm{~m}
$$

(iii) dist from $A=914 \mathrm{x} \cos 70=313 \mathrm{~m}$ beyond C, hence 874 m is shortest dist
OR
perp dist $=914 \times \sin 70=859 \mathrm{~m}$

M1 Attempt use of correct cosine rule, or equiv, to find TC
A1 $\sqrt{ } \quad$ Correct unsimplified expression for $T C$, following their (i)
A1 3 Obtain 874, or better
M1 Attempt to locate point of closest approach
A1 2 Convincing argument that the point is beyond C, or obtain 859 , or better
SR B1 for 874 stated with no method shown

7

6 (i) $S_{\infty}=\frac{20}{1-0.9}$
M1 Attempt use of $S_{\infty}=\frac{a}{1-r}$
$=200$
A1 2 Obtain 200
(ii) $\quad S_{30}=\frac{20\left(1-0.9^{30}\right)}{1-0.9}$

M1 Attempt use of correct sum formula for a GP, with $n=30$
$=192$ A1 2 Obtain 192, or better
(iii) $\quad 20 \times 0.9^{p-1}<0.4$

B1 Correct $20 \times 0.9^{p-1}$ seen or implied
$0.9^{p-1}<0.02$
$(p-1) \log 0.9<\log 0.02$
M1 Link to 0.4 , rearrange to $0.9^{k}=c($ or $>,<)$, introduce
$p-1>\frac{\log 0.02}{\log 0.9}$
$p>38.1 \quad$ M1
hence $p=39$
logarithms, and drop power, or equiv correct method
Correct method for solving their (in)equation
4 State 39 (not inequality), no wrong working seen

8

7 (i) $\begin{aligned} & 6 k^{2} a^{2}=24 \\ & \\ & k^{2} a^{2}=4 \\ & \\ & \\ & a k=2 \quad \text { A.G. }\end{aligned}$
(ii) $4 k^{3} a=128$
$4 k^{3}\left(\frac{2}{k}\right)=128$
$k^{2}=16$
$k=4, a=\frac{1}{2}$

M1* Obtain at least two of $6, k^{2}, a^{2}$
M1dep* Equate $6 k^{m} a^{n}$ to 24
A1 3 Show $a k=2$ convincingly - no errors allowed

B1 State or imply coeff of x is $4 k^{3} a$

A1 \quad Obtain $k=4$
A1 4 Obtain $a=1 / 2$
SR B1 for $k= \pm 4, a= \pm \frac{1}{2}$

M1 Attempt $4 \times k \times a^{3}$, following their a and k (allow if still in terms of a, k)
A1 2 Obtain 2 (allow $2 x^{3}$)
8 (a)(i) $\log _{a} x y=p+q$
B1 1 State $p+q$ cwo
(ii) $\log _{a}\left(\frac{a^{2} x^{3}}{y}\right)=2+3 p-q$

M1 Use $\log a^{b}=b \log a$ correctly at least once
M1 Use $\log \frac{a}{b}=\log a-\log b$ correctly
A1 3 Obtain 2 $+3 p-q$
(b)(i) $\log _{10} \frac{x^{2}-10}{x} \quad$ B1 $1 \quad$ State $\log _{10} \frac{x^{2}-10}{x}$ (with or without base 10)
$\begin{array}{lll}\text { (ii) } \log _{10} \frac{x^{2}-40}{x}=\log _{10} 9 & \text { B1 } & \text { State or imply that } 2 \log _{10} 3=\log _{10} 3^{2} \\ \frac{x^{2}-10}{x}=9 & \text { M1 } & \text { Attempt correct method to remove logs } \\ x^{2}-9 x-10=0 & \text { A1 } & \text { Obtain correct } x^{2}-9 x-10=0 \text { aef, no fractions } \\ (x-10)(x+1)=0 & \text { M1 } & \text { Attempt to solve three term quadratic } \\ x=10 & \text { A1 } \mathbf{5} & \text { Obtain } x=10 \text { only }\end{array}$

10

9 (i) $\mathrm{f}(1)=1-1-3+3=0 \quad$ A.G.
$\mathrm{f}(x)=(x-1)\left(x^{2}-3\right)$
$x^{2}=3$
$x= \pm \sqrt{3}$
(ii) $\tan x=1, \sqrt{3},-\sqrt{3}$
$\tan x=\sqrt{3} \Rightarrow x=\pi / 3,4 \pi / 3$
$\tan x=-\sqrt{3} \Rightarrow x=2 \pi / 3,5 \pi / 3$
$\tan x=1 \Rightarrow x=\pi / 4,5 \pi / 4$

B1 Confirm $f(1)=0$, or division with no remainder shown, or matching coeffs with $R=0$
M1 Attempt complete division by $(x-1)$, or equiv
A1 Obtain $x^{2}+k$
A1 Obtain completely correct quotient (allow $x^{2}+0 x-3$)
M1
A1 6 Obtain $x= \pm \sqrt{3}$ only

B1 $\sqrt{ }$

M1
A1 Obtain at least 2 of $\pi / 3,2 \pi / 3,4 \pi / 3,5 \pi / 3$ (allow degs/decimals)
A1 Obtain all 4 of $\pi / 3,2 \pi / 3,4 \pi / 3,5 \pi / 3$ (exact radians only)
B1 Obtain $\pi / 4$ (allow degs / decimals)
B1 6 Obtain $5 \pi / 4$ (exact radians only)
SR answer only is B1 per root, max of B4 if degs / decimals

4723 Core Mathematics 3

1 (i)	Obtain integral of form $k \mathrm{e}^{-2 x}$ Obtain $-4 \mathrm{e}^{-2 x}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	any constant k different from 8 or (unsimplified) equiv
(ii)	Obtain integral of form $k(4 x+5)^{7}$ Obtain $\frac{1}{28}(4 x+5)^{7}$ Include $\ldots+c$ at least once	$\begin{array}{ll} \text { M1 } & \\ \text { A1 } & \\ \text { B1 } & \\ & 5 \end{array}$	any constant k in simplified form in either part
2 (i)	Form expression involving attempts at y values and addition Obtain $k(\ln 4+4 \ln 6+2 \ln 8+4 \ln 10+\ln 12)$ Use value of k as $\frac{1}{3} \times 2$ Obtain 16.27	M1 A1 A1 A1 4	with coeffs 1,4 and 2 present at least once any constant k or unsimplified equiv or 16.3 or greater accuracy (16.27164...)
(ii)	State 162.7 or 163	$\begin{array}{r} \mathrm{B} 1 \sqrt{ } 1 \\ 5 \end{array}$	following their answer to (i), maybe rounded
3 (i)	Attempt use of identity for $\tan ^{2} \theta$ Replace $\frac{1}{\cos \theta}$ by $\sec \theta$ Obtain 2($\left.\sec ^{2} \theta-1\right)-\sec \theta$	M1 B1 A1 3	using $\pm \sec ^{2} \theta \pm 1$; or equiv or equiv
(ii)	Attempt soln of quadratic in $\sec \theta$ or $\cos \theta$ Relate $\sec \theta$ to $\cos \theta$ and attempt at least one value of θ Obtain $60^{\circ}, 131.8^{\circ}$ Obtain $60^{\circ}, 131.8^{\circ}, 228.2^{\circ}, 300^{\circ}$	M1 M1 A1 A1 4 7	as far as factorisation or substitution in correct formula may be implied allow 132 or greater accuracy allow 132, 228 or greater accuracy; and no others between 0° and 360°

4 (i) Obtain derivative of form $k x\left(4 x^{2}+1\right)^{4}$
Obtain $40 x\left(4 x^{2}+1\right)^{4}$
State $x=0$

M1 any constant k
A1 or (unsimplified) equiv
A1 $\sqrt{ } 3$ and no other; following their derivative of form $k x\left(4 x^{2}+1\right)^{4}$
(ii) Attempt use of quotient rule

M1 or equiv
Obtain $\frac{2 x \ln x-x^{2} \cdot \frac{1}{x}}{(\ln x)^{2}}$
Equate to zero and attempt solution
Obtain $\mathrm{e}^{\frac{1}{2}}$
A1 or equiv
M1 as far as solution involving e
A1 4 or exact equiv; and no other; allow from \pm (correct numerator of derivative)

7 (i) Refer to stretch and translation State stretch, factor $\frac{1}{k}$, in x direction

M1 in either order; allow here informal terms
A1 or equiv; now with correct terminology

State translation in negative y direction by a A1 $\mathbf{3}$ or equiv; now with correct terminology [SC: If M0 but one transformation completely correct - B1]
(ii) Show attempt to reflect negative part
in x-axis
Show correct sketch

M1 ignoring curvature
A1 2 with correct curvature, no pronounced 'rounding' at x-axis and no obvious maximum point
(iii) Attempt method with $x=0$ to find value of a M1 Obtain $a=14 \quad$ A1
Attempt to solve for k
Obtain $k=3$
... other than (or in addition to) value -12 and nothing else using any numerical a with sound process

8 (i) Attempt to express x or x^{2} in terms of y
Obtain $\quad x^{2}=\frac{1296}{(y+3)^{4}}$
Obtain integral of form $k(y+3)^{-3}$
Obtain $-432 \pi(y+3)^{-3}$ or $-432(y+3)^{-3}$
Attempt evaluation using limits 0 and p

Confirm $16 \pi\left(1-\frac{27}{(p+3)^{3}}\right)$

M1
A1 or (unsimplified) equiv
M1 any constant k
A1 or (unsimplified) equiv
M1 for expression of form $k(y+3)^{-n}$ obtained from integration attempt; subtraction correct way round

A1 6 AG; necessary detail required, including appearance of π prior to final line
(ii) State or obtain $\frac{\mathrm{d} V}{\mathrm{~d} p}=1296 \pi(p+3)^{-4} \quad \mathrm{~B} 1 \quad$ or equiv; perhaps involving y

Multiply $\frac{\mathrm{d} p}{\mathrm{~d} t}$ and attempt at $\frac{\mathrm{d} V}{\mathrm{~d} p} \quad * \mathrm{M} 1 \quad$ algebraic or numerical
Substitute $p=9$ and attempt evaluation M1 dep *M
Obtain $\frac{1}{4} \pi$ or 0.785

A1 4 or greater accuracy
10

4724 Core Mathematics 4

1 Attempt to factorise numerator and denominator

Any (part) factorisation of both num and denom
Final answer $=-\frac{5}{6 x}, \frac{-5}{6 x}, \frac{5}{-6 x},-\frac{5}{6} x^{-1} \operatorname{Not}-\frac{\frac{5}{6}}{x}$
M1 $\frac{A}{\mathrm{f}(x)}+\frac{B}{\mathrm{~g}(x)} ; \mathrm{fg}=6 x^{2}-24 x$
A1 Corres identity/cover-up
A1
3

2 Use parts with $u=x, \mathrm{~d} v=\sec ^{2} x$
M1 result $\mathrm{f}(x)+/-\int \mathrm{g}(x) \mathrm{d} x$
Obtain correct result $x \tan x-\int \tan x \mathrm{~d} x$
A1
$\int \tan x \mathrm{~d} x=k \ln \sec x$ or $k \ln \cos x$, where $k=1$ or -1
B1 or $k \ln |\sec x|$ or $k \ln |\cos x|$
Final answer $=x \tan x-\ln |\sec x|+c$ or $x \tan x+\ln |\cos x|+c$ A1

3 (i) $1+\frac{1}{2} \cdot 2 x+\frac{\frac{1}{2} \cdot-\frac{1}{2}}{2}\left(4 x^{2}\right.$ or $\left.2 x^{2}\right)+\frac{\frac{1}{2} \cdot-\frac{1}{2} \cdot-\frac{3}{2}}{6}\left(8 x^{3}\right.$ or $\left.2 x^{3}\right)$
$=1+x$
B1
$\ldots-\frac{1}{2} x^{2}+\frac{1}{2} x^{3} \quad$ (AE fract coeffs)
A1 (3) For both terms
(ii) $(1+x)^{-3}=1-3 x+6 x^{2}-10 x^{3}$

B1 or $(1+x)^{3}=1+3 x+3 x^{2}+x^{3}$
Either attempt at their (i) multiplied by $(1+x)^{-3}$
$1-2 x \ldots$
$\sqrt{ } 1+(a-3) x$
M1 or (i) long div by $(1+x)^{3}$
$\ldots+\frac{5}{2} x^{2} \ldots$
$\sqrt{ }(-3 a+b+6) x^{2}$
A1
... $-2 x^{3}$
$\sqrt{ }(6 a-3 b+c-10) x^{3}$
A1 (5) (AE fract.coeffs)
(iii) $-\frac{1}{2}<x<\frac{1}{2}, \quad$ or $|x|<\frac{1}{2}$

B1 (1)
$4 \quad$ Attempt to expand $(1+\sin x)^{2}$ and integrate it
Attempt to change $\sin ^{2} x$ into $\mathrm{f}(\cos 2 x)$
Use $\sin ^{2} x=\frac{1}{2}(1-\cos 2 x)$
Use $\quad \int \cos 2 x \mathrm{~d} x=\frac{1}{2} \sin 2 x$
Use limits correctly on an attempt at integration
$\frac{3}{8} \pi-\sqrt{2}+\frac{7}{4} \quad \mathrm{AE}(3$-term) F
*M1 Minimum of $1+\sin ^{2} x$
M1

A1 dep M1 + M1

A1 $\quad \operatorname{dep}$ M1 + M1
dep* M1 Tolerate $g\left(\frac{1}{4} \pi\right)-0$
A1 WW $1.51 \ldots \rightarrow$ M1 A0

5 (i) Attempt to connect $\mathrm{d} u$ and $\mathrm{d} x$, find $\frac{\mathrm{d} u}{\mathrm{~d} x}$ or $\frac{\mathrm{d} x}{\mathrm{~d} u}$
M1 But not e.g. $\mathrm{d} u=\mathrm{d} x$
Any correct relationship, however used, such as $\mathrm{d} x=2 u \mathrm{~d} u$ A1 \quad or $\frac{\mathrm{d} u}{\mathrm{~d} x}=\frac{1}{2} x^{1 / 2}$

Subst with clear reduction (≥ 1 inter step) to AG
(ii) Attempt partial fractions

M1
$\frac{2}{u}-\frac{2}{1+u}$
A1
$\sqrt{ } \mathrm{A} 1 \quad$ Based on $\frac{A}{u}+\frac{B}{1+u}$
M1 or re-subst \& use $1 \& 9$
A1 (5) Not involving $\ln 1$

6 (i) Solve $0=t-3 \&$ subst into $x=t^{2}-6 t+4$
Obtain $x=-5$
N.B. If (ii) completed first, subst $y=0$ into their cartesian eqn (M1) \& find x (no f.t.) (A1)
(ii) Attempt to eliminate t

Simplify to $x=y^{2}-5 \quad$ ISW
M1
A1 (2)
(iii) Attempt to find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ or $\frac{\mathrm{d} x}{\mathrm{~d} y}$ from cartes or para form \quad M1 Award anywhere in Que

Obtain $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{2 t-6}$ or $\frac{1}{2 y}$ or $(-) \frac{1}{2}(x+5)^{-\frac{1}{2}}$
A1

If $t=2, x=-4$ and $y=-1$
B1 Awarded anywhere in (iii)
Using their num $(x, y) \&$ their num $\frac{\mathrm{d} y}{\mathrm{~d} x}$, find tgt eqn M1
$x+2 y+6=0 \quad$ AEF (without fractions) \quad ISW \quad A1 (5)

7 (i) Attempt direction vector between the 2 given points
M1
State eqn of line using format $(\mathbf{r})=($ either end $)+s($ dir vec) M1 ' s ' can be ' t '
Produce $2 / 3$ eqns containing t and s
Solve giving $t=3, s=-2$ or 2 or -1 or 1
M1 2 different parameters

Show consistency
Point of intersection $=(5,9,-1)$
A1
B1
A1 (6)
(ii) Correct method for scalar product of 'any' 2 vectors

Correct method for magnitude of 'any' vector
M1 Vectors from this question

Use $\cos \theta=\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|}$ for the correct 2 vectors $\left(\begin{array}{l}1 \\ 4 \\ -2\end{array}\right) \&\left(\begin{array}{l}2 \\ -1 \\ 3\end{array}\right)$
62.2 (62.188157...) 1.09 (1.0853881) A1 (4)

10

8 (i) $\frac{\mathrm{d}}{\mathrm{d} x}\left(y^{3}\right)=3 y^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}$
Consider $\frac{\mathrm{d}}{\mathrm{d} x}(x y)$ as a product
$=x \frac{\mathrm{~d} y}{\mathrm{~d} x}+y$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{6 y-3 x^{2}}{3 y^{2}-6 x} \quad$ ISW AEF

B1

M1

A1 Tolerate omission of ' 6 '

A1 (4)
(ii) $x^{3}=2^{4}$ or 16 and $y^{3}=2^{5}$ or 32

Satisfactory conclusion
Substitute $\left(2^{\frac{4}{3}}, 2^{\frac{5}{3}}\right)$ into their $\frac{\mathrm{d} y}{\mathrm{~d} x}$
*B1
dep* B1 AG
M1 or the numerator of $\frac{\mathrm{d} y}{\mathrm{~d} x}$

Show or use calc to demo that num $=0$, ignore denom AG A1 (4)
(iii) Substitute (a, a) into eqn of curve
$a=3$ only with clear ref to $a \neq 0$
Substitute $(3,3)$ or (their a, their a) into their $\frac{\mathrm{d} y}{\mathrm{~d} x}$
-1 only WWW

9 (i) $\frac{\mathrm{d} \theta}{\mathrm{d} t}=\ldots$
$k(160-\theta) \quad B 1$ (2) The 2 @ 'B1' are indep
(ii) Separate variables with $(160-\theta)$ in denom; or invert

Indication that LHS $=\ln \mathrm{f}(\theta)$
RHS $=k t$ or $\frac{1}{k} t$ or $t \quad(+c)$
Subst. $t=0, \theta=20$ into equation containing ' c '
Subst $t=5, \theta=65$ into equation containing ' c ' \& ' k ' dep* M1
$c=-\ln 140 \quad(-4.94) \quad$ ISW
$k=\frac{1}{5} \ln \frac{140}{95} \quad(\approx 0.077$ or 0.078$) \quad$ ISW
Using their ' c ' \& ' k ', subst $t=10 \&$ evaluate θ
$\theta=96(95.535714) \quad\left(95 \frac{15}{28}\right)$

A1 (4) from (their a,their a) 12
M1 \& attempt to state ' $a=\ldots$ '
A1

M1
*M1 $\quad \int \frac{1}{160-\theta} \mathrm{d} \theta=\int k, \frac{1}{k}, 1 \mathrm{~d} t$
A1 If wrong ln, final 3@A=0
A1 dep* M1

B1

A1
A1
dep*M1
A1 (9)

4725 Further Pure Mathematics 1

1	$\frac{7}{26}+\frac{17}{26} \mathrm{i}$.	$\begin{array}{\|l\|} \hline \text { M1 } \\ \text { A1 A1 } \\ \text { A1 } \end{array}$	4 4	Multiply by conjugate of denominator Obtain correct numerator Obtain correct denominator
2	(i) $\frac{1}{10}\left(\begin{array}{cc}5 & 0 \\ -a & 2\end{array}\right)$ (ii) $\left(\begin{array}{cc}3 & -2 \\ 2 a & 6\end{array}\right)$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	2	Both diagonals correct Divide by correct determinant Two elements correct Remaining elements correct
3	$\begin{aligned} & n^{2}(n+1)^{2}+n(n+1)(2 n+1)+n(n+1) \\ & n(n+1)^{2}(n+2) \end{aligned}$	M1 A1 A1 M1 A1ft A1	6	Express as sum of 3 terms 2 correct unsimplified terms $3^{\text {rd }}$ correct unsimplified term Attempt to factorise Two factors found, ft their quartic Correct final answer a.e.f.
4	$\left(\begin{array}{ll} 0 & 0 \\ 0 & 0 \end{array}\right)$	$\begin{aligned} & \hline \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	4 4	State or use correct result Combine matrix and its inverse Obtain \mathbf{I} or \mathbf{I}^{2} but not 1 Obtain zero matrix but not 0 S.C. If $0 / 4, \mathbf{B 1}$ for $\mathbf{A A}^{-1}=\mathbf{I}$
5	Either $4 k-4$ $k=1$ Or	M1 M1 A1 M1 A1ft M1 A1 M1 A1 A1	5 5	Consider determinant of coefficients of LHS Sensible attempt at evaluating any $3 \times 3 \mathrm{det}$ Obtain correct answer a.e.f. unsimplified Equate det to 0 Obtain $k=1$, ft provided all M's awarded Eliminate either x or y Obtain correct equation Eliminate $2^{\text {nd }}$ variable Obtain correct linear equation Deduce that $k=1$
6	(i) Either Or (ii) (iii) $\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$ (iv)	B1 DB1 B1 DB1 B1 DB1 B1 B1 B1B1B1	2 2 2 2 3 9	Reflection, in x-axis Stretch parallel to y-axis, s.f. -1 Reflection, in $y=-x$ Each column correct Rotation, 90°,clockwise about O S.C. If (iii) incorrect, B1 for identifying their transformation, B1 all details correct

\begin{tabular}{|c|c|c|c|c|}
\hline 7 \& \begin{tabular}{l}
(i) \(13^{n}+6^{n-1}+13^{n+1}+6^{n}\) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
B1 \\
M1 \\
A1 \\
B1 \\
B1 \\
B1 \\
B1
\end{tabular} \& 4 \& \begin{tabular}{l}
Correct expression seen \\
Attempt to factorise both terms in (i) Obtain correct expression Check that result is true for \(n=1\) (or 2) Recognise that (i) is divisible by 7 Deduce that \(u_{n+1}\) is divisible by 7 Clear statement of Induction conclusion
\end{tabular} \\
\hline 8 \& \begin{tabular}{l}
(i) \\
(ii)
\[
\begin{aligned}
\& \alpha+\beta=6 k, \alpha \beta=k^{2} \\
\& \alpha-\beta=(4 \sqrt{2}) k
\end{aligned}
\] \\
(iii)
\[
\begin{aligned}
\& \sum \alpha^{\prime}=6 k \\
\& \alpha^{\prime} \beta^{\prime}=\alpha \beta-(\alpha-\beta)-1 \\
\& \alpha^{\prime} \beta^{\prime}=k^{2}-(4 \sqrt{2}) k-1 \\
\& x^{2}-6 k x+k^{2}-(4 \sqrt{2}) k-1=0
\end{aligned}
\]
\end{tabular} \& \begin{tabular}{l}
M1 \\
A1 \\
B1 B1 \\
M1 \\
A1 \\
B1ft \\
M1 \\
A1ft \\
B1 ft
\end{tabular} \& 4

4

10 \& | Expand at least 1 of the brackets Derive given answer correctly |
| :--- |
| State or use correct values |
| Find value of $\alpha-\beta$ using (i) |
| Obtain given value correctly (allow if $-6 k$ used) |
| Sum of new roots stated or used |
| Express new product in terms of old roots |
| Obtain correct value for new product |
| Write down correct quadratic equation |

\hline 9 \& | (i) |
| :--- |
| (ii) $1+\frac{1}{3}-\frac{1}{2 n-1}-\frac{1}{2 n+1}$ |
| (iii) $\frac{4}{3}$ | \& \[

$$
\begin{array}{|l|}
\hline \text { M1 } \\
\text { A1 } \\
\text { M1 } \\
\text { M1 } \\
\text { A1 } \\
\text { A1 } \\
\text { M1 } \\
\text { A1 } \\
\\
\text { B1ft }
\end{array}
$$
\] \& 2

6
1

9 \& | Use correct denominator |
| :--- |
| Obtain given answer correctly |
| Express terms as differences using (i) |
| Do this for at least ${ }^{\text {st }} 3$ terms |
| First 3 terms all correct |
| Last 3 terms all correct (in terms or n or r) |
| Show pairs cancelling |
| Obtain correct answer, a.e.f.(in terms of n) |
| Given answer deduced correctly, ft their (ii) |

\hline
\end{tabular}

4726 Further Pure Mathematics 2

1 (i) Give $1+2 x+(2 x)^{2} / 2$
Get $1+2 x+2 x^{2}$
(ii) $\ln \left(\left(1+2 x+2 x^{2}\right)\right.$ $\left.+\left(1-2 x+2 x^{2}\right)\right)=$
$\ln \left(2+4 x^{2}\right)=$
$\ln 2+\ln \left(1+2 x^{2}\right)$
$\ln 2+2 x^{2}$

2 (i) $x_{2}=1.8913115$
$x_{3}=1.8915831$
$x_{4}=1.8915746$
(ii) $e_{3} / e_{2}=-0.031(1)$
$e_{4} / e_{3}=-0.036(5)$
State $\mathrm{f}^{\prime}(\alpha) \approx e_{3} / e_{2} \approx e_{4} / e_{3}$

3 (i) Diff. $\sin y=x$
Use $\sin ^{2}+\cos ^{2}=1$ to A.G.
Justify +
(ii) Get $2 /\left(\sqrt{ }\left(1-4 x^{2}\right)\right.$
$+1 /\left(\sqrt{ }\left(1-y^{2}\right) \mathrm{d} y / \mathrm{d} x=0\right.$
Find $y=\sqrt{ } 3 / 2$
Get $-2 \sqrt{ } 3 / 3$

M1 Reasonable 3 term attempt e.g. allow $2 x^{2} / 2$
A1 cao
SC Reasonable attempt at $\mathrm{f}^{\prime}(0)$ and $\mathrm{f}^{\prime \prime}(0) \mathrm{M} 1$ Get $1+2 x+2 x^{2}$ cao A1

M1 Attempt to sub for $\mathrm{e}^{2 x}$ and $\mathrm{e}^{-2 x}$
A1 $\sqrt{ }$ On their part (i)
M1 Use of log law in reasonable expression
A1 cao
SC Use of Maclaurin for $\mathrm{f}^{\prime}(x)$ and $\mathrm{f}^{\prime \prime}(x)$ M1 One correct A1 Attempt $f(0), \mathrm{f}^{\prime}(0)$ and $\mathrm{f}^{\prime \prime}(0) \quad$ M1 Get cao A1

B1 x_{2} correct; allow answers which round
B1 $\sqrt{ }$ For any other from their working
B1 For all three correct
M1 Subtraction and division on their values; allow \pm
A1 Or answers which round to -0.031 and -0.037
$B 1 \sqrt{ }$ Using their values but only if approx. equal; allow differentiation if correct conclusion; allow gradient for f^{\prime}

M1 Implicit diff. to $\mathrm{d} y / \mathrm{d} x= \pm(1 / \cos y)$
A1 Clearly derived; ignore \pm
B1 e.g graph/ principal values
M1 Attempt implicit diff. and chain rule; allow e.g. $\left(1-2 x^{2}\right)$ or $a / \sqrt{ }\left(1-4 x^{2}\right)$

A1
M1 Method leading to y
$\mathrm{A} 1 \sqrt{ }$ AEEF; from their a above
SC Write $\sin \left(1 / 2 \pi-\sin ^{-1} 2 x\right)=\cos \left(\sin ^{-1} 2 x\right)$ B1
Attempt to diff. as above M1
Replace x in reasonable $\mathrm{d} y / \mathrm{d} x$ and attempt to tidy
Get result above A1

4 (i) Let $x=\cosh \theta$ such that
$\mathrm{d} x=\sinh \theta \mathrm{d} \theta$
Clearly use $\cosh ^{2}-\sinh ^{2}=1$
(ii) Replace $\cosh ^{2} \theta$

Attempt to integrate their expression
Get $1 / 4 \sinh 2 \theta+1 / 2 \theta(+c)$
Clearly replace for x to A.G.

5 (i) (a) State $(x=) \alpha$
None of roots
(b) Impossible to say All roots can be derived
(ii)

6 (i) Correct definitions used
Attempt at $\left(e^{x}-e^{-x}\right)^{2} / 4+1$
Clearly derive A.G.
(ii) Form a quadratic in $\sinh x$

Attempt to solve
Get $\sinh x=-1 / 2$ or 3
Use correct \ln expression
Get $\ln \left(-1 / 2+{ }^{15} / 2\right)$ and $\ln (3+\sqrt{ } 10)$
7 (i) $\mathrm{O} P=3+2 \cos \alpha$
$\mathrm{O} Q=3+2 \cos (1 / 2 \pi+\alpha)$ $=3-2 \sin \alpha$
Similarly $\mathrm{O} R=3-2 \cos \alpha$
$\mathrm{OS}=3+2 \sin \alpha$
Sum $=12$
(ii) Correct formula with attempt at r^{2} Square r correctly A1
Attempt to replace $\cos ^{2} \theta$ with $a(\cos 2 \theta \pm 1)$
Integrate their expression
$\operatorname{Get}^{11 \pi / 4}-1$

M1
A1 Clearly derive A.G.
M1 Allow $a(\cosh 2 \theta \pm 1)$
M1 Allow $b \sinh 2 \theta \pm a \theta$
A1
B1

Condone no $+c$	
SC Use expo. def	
nt three terms	M1
Attempt to integrate	M1
Get $^{1} / 8\left(\mathrm{e}^{2 \theta}-\mathrm{e}^{-2 \theta}\right)+1 / 2 \theta(+c)$	A1
Clearly replace for x to A.G.	B1

B1
B1 No explanation needed
B1
B1 Some discussion of values close to 1 or 2 or central leading to correct conclusion

B1 Correct x for $y=0$; allow $0.591,1.59,2.31$
B1 Turning at $(1,0.8)$ and/or ($1,-0.8$)
B1 Meets x-axis at 90°
B1 Symmetry in x-axis; allow

B1

M1
M1
A1

M1
A1
M1
A1
Factors or formula
On their answer(s) seen once
Allow $\left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)^{2}+1$; allow /2

M1 Any other unsimplified value
M1 Attempt at simplification of at least two correct expressions
cao
Need not be expanded, but three terms if it is

8 (i) Area $=\int 1 /(x+1) \mathrm{d} x$
Use limits to $\ln (n+1)$
Compare area under curve to areas of rectangles
Sum of areas $=1 \mathrm{x}(1 / 2+1 / 3+\ldots+\quad$ M1
$1 /(n+1)$)
Clear detail to A.G.
(ii) Show or explain areas of rectangles above curve Areas of rectangles (as above) $>$ area under curve
(iii) Add 1 to both sides in (i) to make $\sum(1 / r)$
Add ${ }^{1} /_{(n+1)}$ to both sides in (ii) to make $\sum\left({ }^{1} / r\right)$
(iv) State divergent

B1
Explain e.g. $\ln (n+1) \rightarrow \infty$ as $n \rightarrow \infty$ B1

9 (i) Require denom. $=0$
B1
Explain why denom. $\neq 0$
B1
(ii) Set up quadratic in x

Get $2 y x^{2}-4 x+\left(2 a^{2} y+3 a\right)=0$
A1
Use $b^{2} \geq 4 a c$ for real x
Attempt to solve their inequality
Get $y>1 / 2 a$ and $y<-2 / a$
B1
B1

B1 Include or imply correct limits

A1 Explanation required e.g. area of last rectangle at $x=n$, area under curve to $x=n$

A1 First and last heights seen or implied; A.G.

B1 Must be clear addition
B1 Must be clear addition; A.G.

Allow not convergent

Attempt to solve, explain always >0 etc.

A1 Justified from graph
SC Attempt diff. by quot./product rule M1
Solve $\mathrm{d} y / \mathrm{d} x=0$ for two values of $x \quad$ M1
Get $x=2 a$ and $x=-a / 2 \quad$ A1
Attempt to find two y values M1
Get correct inequalities (graph used to justify them) A1
(iii) Split into two separate integrals

Get $k \ln \left(x^{2}+a^{2}\right)$
Get $k_{1} \tan ^{-1}(x / a)$
M1

Use limits and attempt to simplify
Get $\ln 2.5-1.5 \tan ^{-1} 2+3 \pi / 8$

A1 AEEF

SC Sub. $x=a \tan \theta$ and $\mathrm{d} x=a \sec ^{2} \theta \mathrm{~d} \theta \quad$ M1
Reduce to $\int p \tan \theta-p_{1} \mathrm{~d} \theta \quad \mathrm{~A} 1$
(ignore limits here)
Integrate to $p \ln (\sec \theta)-p_{1} \theta \quad \mathrm{~A} 1$
Use limits (old or new) and attempt to simplify M1
Get answer above A1

4727 Further Pure Mathematics 3

4

$$
\begin{aligned}
& m^{2}+4 m+5(=0) \Rightarrow m=\frac{-4 \pm \sqrt{16-20}}{2} \\
& =-2 \pm \mathrm{i} \\
& \text { CF }=\mathrm{e}^{-2 x}(C \cos x+D \sin x) \\
& \text { PI }=p \sin 2 x+q \cos 2 x \\
& y^{\prime}=2 p \cos 2 x-2 q \sin 2 x \\
& y^{\prime \prime}=-4 p \sin 2 x-4 q \cos 2 x \\
& \cos 2 x(-4 q+8 p+5 q) \\
& +\sin 2 x(-4 p-8 q+5 p)=65 \sin 2 x \\
& \left.\begin{array}{l}
8 p+q=0 \\
p-8 q=65
\end{array}\right\} \quad p=1, \quad q=-8 \\
& \text { PI }=\sin 2 x-8 \cos 2 x \\
& \Rightarrow y= \\
& \text { M1 For attempt to solve correct auxiliary equation } \\
& \text { A1 For correct roots } \\
& \text { A1 } \sqrt{ } \quad \text { For correct } \mathrm{CF} \text { (here or later). f.t. from } m \\
& \text { AEtrig but not forms including } \mathrm{e}^{\mathrm{i} x} \\
& \text { B1 For stating a trial PI of the correct form } \\
& \text { M1 For differentiating PI twice and substituting into } \\
& \text { the } \mathrm{DE} \\
& \text { A1 For correct equation } \\
& \text { M1 For equating coefficients of } \cos 2 x \text { and } \sin 2 x \\
& \text { and attempting to solve for } p \text { and/or } q \\
& \Rightarrow y= \\
& \text { A1 For correct } p \text { and } q \\
& \mathrm{e}^{-2 x}(C \cos x+D \sin x)+\sin 2 x-8 \cos 2 x \\
& \text { B1 } \sqrt{ } \quad \text { For using GS }=\text { CF }+ \text { PI, with } 2 \text { arbitrary constants } \\
& 9 \text { in CF and none in PI }
\end{aligned}
$$

9

5 (i)	$y=u-\frac{1}{x} \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{\mathrm{d} u}{\mathrm{~d} x}+\frac{1}{x^{2}}$	M1	For differentiating substitution For correct expression
	$x^{3}\left(\frac{\mathrm{~d} u}{\mathrm{~d} x}+\frac{1}{x^{2}}\right)=x\left(u-\frac{1}{x}\right)+x+1$	M1	For substituting y and $\frac{\mathrm{d} y}{\mathrm{~d} x}$ into DE
\Rightarrow	$x^{2} \frac{\mathrm{~d} u}{\mathrm{~d} x}=u$	A1 4	For obtaining correct equation AG

(ii)

$$
\begin{aligned}
& \int \frac{1}{u} \mathrm{~d} u=\int \frac{1}{x^{2}} \mathrm{~d} x \Rightarrow \ln k u=-\frac{1}{x} \\
& k u=\mathrm{e}^{-1 / x} \Rightarrow k\left(y+\frac{1}{x}\right)=\mathrm{e}^{-1 / x} \\
& \Rightarrow y=A \mathrm{e}^{-1 / x}-\frac{1}{x}
\end{aligned}
$$

M1 For separating variables and attempt at integration
A1 For correct integration (k not required here)
M1 For any 2 of
M1 For all 3 of exponentiating,
substituting for u
A1 5 For correct solution AEF in form $y=\mathrm{f}(x)$
METHOD 2
$\frac{\mathrm{d} u}{\mathrm{~d} x}-\frac{1}{x^{2}} u=0 \Rightarrow$ I.F. $\mathrm{e}^{\int-1 / x^{2} \mathrm{~d} x}=\mathrm{e}^{1 / x} \quad$ M1 \quad For attempt to find I.F.
$\Rightarrow \frac{\mathrm{d}}{\mathrm{d} x}\left(u \mathrm{e}^{1 / x}\right)=0$
A1 For correct result
$u \mathrm{e}^{1 / x}=k \Rightarrow y+\frac{1}{x}=k \mathrm{e}^{-1 / x} \quad$ M1
$\left.\begin{array}{ll}\text { M1 } \\ \text { M1 } & \text { From } u \times \text { I.F. }=,\end{array}, \begin{array}{l}\text { for } k \text { seen } \\ \text { for substituting for } u\end{array}\right\}$ in either
$\Rightarrow y=k \mathrm{e}^{-1 / x}-\frac{1}{x}$

6 (i) METHOD 1

Use 2 of
$[-4,2,0],[0,0,3],[-4,2,3],[4,-2,3]$
or multiples
$\mathbf{n}=k[1,2,0]$
Use
$A[4,0,0], C[0,2,0], G[0,2,3]$ OR $E[4,0,3]$
r. $[1,2,0]=4$

METHOD 2
$\mathbf{r}=[4,0,0]+\lambda[-4,2,0]+\mu[0,0,3]$
$\Rightarrow x=4-4 \lambda, y=2 \lambda, z=3 \mu$
$x+2 y=4$
$\Rightarrow \mathbf{r} .[1,2,0]=4$
(ii) $\quad \theta=\cos ^{-1} \frac{|[3,0,-4] \cdot[1,2,0]|}{\sqrt{3^{2}+0^{2}+4^{2}} \sqrt{1^{2}+2^{2}+0^{2}}}$
$\theta=\cos ^{-1} \frac{3}{5 \sqrt{5}}=74.4^{\circ}$
(74.435..., $1.299 \ldots$...)
(iii) $A M:(\mathbf{r}=)[4,0,0]+t[-2,2,3]$

$$
(\text { or }[2,2,3]+t[-2,2,3])
$$

$3(4-2 t)-4(3 t)=0$
(or $3(2-2 t)-4(3+3 t)=0)$
$t=\frac{2}{3}\left(\right.$ or $\left.t=-\frac{1}{3}\right) O R \mathbf{w}=\left[\frac{8}{3}, \frac{4}{3}, 2\right]$
$A W: W M=2: 1$

M1 For finding vector product of 2 appropriate vectors in plane $A C G E$
A1 For correct \mathbf{n}
M1 For substituting a point in the plane

A1 4 For correct equation. AEF in this form

M1 For writing plane in 2-parameter form
A1 For 3 correct equations
M1 For eliminating λ (and μ)
A1 For correct equation. AEF in this form
B1 $\sqrt{ }$ For using correct vectors (allow multiples). f.t.
M1 from n
M1 For using scalar product
For multiplying both moduli in denominator
A1 4 For correct angle

M1 For obtaining parametric expression for $A M$
A1 For correct expression seen or implied
M1 For finding intersection of $A M$ with $A C G E$
A1 For correct $t O R$ position vector
A1 5 For correct ratio
13

7 (i) $x+y-a \in \mathrm{R} \quad \mathrm{B}$
(a)
$(x * y) * z=(x+y-a) * z=x+y+z-2 a$
M1
$x *(y * z)=x *(y+z-a)=x+y+z-2 a$
$x+e-a=x \Rightarrow e=a$
B1 \quad For stating identity $=a$
M1 For attempting to obtain inverse of x
$x+x^{-1}-a=a \Rightarrow x^{-1}=2 a-x$
For stating closure is satisfied
For using 3 distinct elements bracketed both ways
A1 For obtaining the same result twice for associativity
SR 3 distinct elements bracketed once, expanded, and symmetry noted scores M1 A1

A1 6 For obtaining inverse $=2 a-x$
$O R$ for showing that inverses exist, where $x+x^{-1}=2 a$
(b) $x+y-a=y+x-a \Rightarrow$ commutative

B1 $\mathbf{1}$ For stating commutativity is satisfied, with justification
For obtaining equation for an element of order
(c) $\Rightarrow 2 x-a=a \Rightarrow x=a=e$

OR $x=x^{-1} \Rightarrow x=2 a-x \Rightarrow x=a=e$
\Rightarrow no elements of order 2

2
For solving and showing that the only solution is the identity (which has order 1)
$O R$ For proving that there are no self-inverse elements (other than the identity)
(ii)
e.g. $2+1-5=-2 \notin \mathrm{R}^{+}$
\Rightarrow not closed
e.g. $2 \times 5-11=-1 \notin \mathrm{R}^{+}$
\Rightarrow no inverse

M1 For attempting to disprove closure
A1 For stating closure is not necessarily satisfied ($0<x+y$, 5 required)
M1 For attempting to find an element with no inverse
A1 4 For stating inverse is not necessarily satisfied ($x \ldots 10$ required)

13

8 (i) $\quad \sin \theta=\frac{1}{2 \mathrm{i}}\left(\mathrm{e}^{\mathrm{i} \theta}-\mathrm{e}^{-\mathrm{i} \theta}\right)$
z may be used for $\mathrm{e}^{\mathrm{i} \theta}$ throughout
B1 For expression for $\sin \theta$ seen or implied
M1 \quad For expanding $\left(e^{i \theta}-e^{-i \theta}\right)^{6}$
$\sin ^{6} \theta=$
At least 4 terms and 3 binomial coefficients required.
$-\frac{1}{64}\left(\mathrm{e}^{6 i \theta}-6 \mathrm{e}^{4 i \theta}+15 \mathrm{e}^{2 \mathrm{ii} \mathrm{\theta}}-20+15 \mathrm{e}^{-2 \mathrm{i} \theta}-6 \mathrm{e}^{-4 i \theta}+\mathrm{e}^{-6 \mathrm{ii} \mathrm{\theta}}\right)$ For correct expansion. Allow $\frac{ \pm(\mathrm{i})}{64}(\cdots \cdots)$
A1
$=-\frac{1}{64}(2 \cos 6 \theta-12 \cos 4 \theta+30 \cos 2 \theta-20)$ M1 For grouping terms and using multiple angles
$\sin ^{6} \theta=-\frac{1}{32}(\cos 6 \theta-6 \cos 4 \theta+15 \cos 2 \theta-10) \quad$ A1 $\quad 5 \quad$ For answer obtained correctly AG
(ii) $\cos ^{6} \theta=O R \sin ^{6}\left(\frac{1}{2} \pi-\theta\right)=\quad$ M1 For substituting $\left(\frac{1}{2} \pi-\theta\right)$ for θ throughout
$-\frac{1}{32}(\cos (3 \pi-6 \theta)-6 \cos (2 \pi-4 \theta)+15 \cos (\pi-2 \theta)-10)$
A1 For correct unsimplified expression
$\cos ^{6} \theta=\frac{1}{32}(\cos 6 \theta+6 \cos 4 \theta+15 \cos 2 \theta+10)$ A1 3 For correct expression with $\cos n \theta$ terms AEF
(iii) $\int_{0}^{\frac{1}{4} \pi} \frac{1}{32}(-2 \cos 6 \theta-30 \cos 2 \theta) d \theta$
$=-\frac{1}{16}\left[\frac{1}{6} \sin 6 \theta+\frac{15}{2} \sin 2 \theta\right]_{0}^{\frac{1}{4} \pi}$
$=-\frac{11}{24}$
$B 1 \sqrt{ } \quad$ For correct integral. f.t. from $\sin ^{6} \theta-\cos ^{6} \theta$
M1 For integrating $\cos n \theta, \sin n \theta$ or $\mathrm{e}^{\mathrm{i} n \theta}$
A1 $\sqrt{ }$ For correct integration. f.t. from integrand
A1 4 For correct answer www

4728 Mechanics 1

1 (i)	$\begin{aligned} & 0.5 \times 6=0.5 \times 0.8+4 \mathrm{~m} \\ & \mathrm{~m}=0.65 \end{aligned}$	$\begin{array}{\|c\|} \hline \text { M1 } \\ \text { A1 } \\ \text { A1 } \\ {[3]} \\ \hline \end{array}$	Uses CoLM If g used throughout, possible 3 marks
(ii)	$\begin{aligned} & 0.5 \times 6=-0.5 \times 0.8+4 \mathrm{~m} \\ & \mathrm{~m}=0.85 \end{aligned}$	M1 A1 A1 [3]	After momentums opposite signs If g used throughout, 0 marks
2 (i)	$\begin{aligned} \mathrm{T} & =400 \mathrm{~N} \\ \mathrm{D} & =400+900 \\ & =1300 \mathrm{~N} \end{aligned}$	$\begin{aligned} & \hline \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & {[3]} \\ & \hline \end{aligned}$	Order immaterial Or T +900 ; sign correct
(ii)	$\begin{aligned} & 500 \times 0.6=\mathrm{T}-400 \\ & \mathrm{~T}=700 \mathrm{~N} \\ & 1250 \times 0.6=\mathrm{D}-900-700 \\ & \mathrm{D}=2350 \mathrm{~N} \\ & O R \\ & (500+1250) \times 0.6=\mathrm{D}-400-900 \\ & \mathrm{D}=2350 \mathrm{~N} \end{aligned}$	M1 A1 A1 M1 Alft A1 M1 A1 A1 [6]	(Award M marks even if g included in ma terms. M marks require correct number forces) Uses N2L one object only Uses N2L other object ft cv (T from (ii)); allow T instead of its value Uses N2L for both objects
3 (i)	$\begin{aligned} & 5 \cos 30 \text { or } 5 \sin 60 \text { or } 4.33 \\ & 5 \cos 60 \text { or } 5 \sin 30 \text { or } 2.5 \end{aligned}$	B1 [2]	Order immaterial, accept $+/$. May be awarded in (ii) if no attempt in (i)
(ii)	$\begin{aligned} & 7-4.33(=2.67) \text { and } 9-2.5(=6.5) \\ & \mathrm{R}^{2}=2.67^{2}+6.5^{2} \\ & \mathrm{R}=7.03 \\ & \tan \theta=6.5 / 2.67 \\ & \theta=67.6,67.7 \text { degrees } \end{aligned}$	M1* A1 D*M 1 A1 D*M 1 A1 [6]	Subtracts either component from either force 3sf or better Valid trig for correct angle 3 sf or better
4 (i)	$\begin{aligned} & 20 \cos 30 \\ & 20 \cos 30=3 \mathrm{a} \\ & \mathrm{a}=5.77 \mathrm{~ms}^{-2} \end{aligned}$	$\begin{gathered} \hline \text { M1 } \\ \text { M1 } \\ \text { A1 } \\ {[3]} \\ \hline \end{gathered}$	Resolves 20 (accept $20 \sin 30$) Uses N2L horizontally, accept g in ma term
(ii)	$\begin{aligned} & \mathrm{R}=3 \mathrm{x} 9.8+20 \sin 30(=39.4) \\ & \mathrm{F}=20 \cos 30(=17.3) \\ & 17.3=39.4 \mu \\ & \mu=0.44 \end{aligned}$	M1 A1 B1 M1 A1 [5]	Resolves vertically (accept - , \cos if \sin in i); correct no. terms Correct (Neither R nor F need be evaluated) Uses $F=\mu R$

5 (i)	$\begin{aligned} & \hline \mathrm{V}=\int 0.8 \mathrm{tdt} \\ & \mathrm{v}=0.8 \mathrm{t}^{2} / 2(+\mathrm{c}) \\ & \mathrm{t}=0, \mathrm{v}=13,(\mathrm{c}=13) \\ & \mathrm{v}=0.4 \mathrm{x} 6^{2}(+\mathrm{c}) \\ & \mathrm{v}=27.4 \mathrm{~ms}^{-1} \end{aligned}$	$$	Attempt at integration Award if c omitted
(ii)	$\begin{aligned} & \mathrm{s}=\int 0.4 \mathrm{t}^{2}(+\mathrm{c}) \mathrm{dt} \\ & \mathrm{~s}=0.4 \mathrm{t}^{3} / 3+13 \mathrm{t}(\mathrm{tk}) \\ & \mathrm{t}=0, \mathrm{~s}=0,(\mathrm{k}=0) \\ & \mathrm{s}=0.4 \times 6^{3} / 3+13 \times 6 \\ & \mathrm{~s}=106.8 \mathrm{~m} \end{aligned}$	$\begin{aligned} & \hline \text { M1* } \\ & \text { A1ft } \\ & \text { M1 } \\ & \text { D*M1 } \\ & \text { A1 } \\ & \quad[5] \\ & \hline \end{aligned}$	Attempt at integration of $\mathrm{v}(\mathrm{t})$ $\mathrm{ftcv}(\mathrm{v}(\mathrm{t})$ in (i)) Allow if $\mathrm{k}=0$ assumed. Accept 107 m .
(iii)	Fig. 2 Fig. 1 has zero initial velocity/gradient Fig. 3 does not have a increasing velocity/gradient	B1 [1] B1 B1 [2]	
$\begin{array}{rr} \hline 6 & \text { (i) } \\ & a \\ & \text { b } \end{array}$	$\begin{aligned} & 2.5=9.8 \mathrm{t}^{2} / 2 \\ & \mathrm{t}=0.714 \mathrm{~s} \text { or better or } 5 / 7 \\ & \mathrm{v}^{2}=2 \times 9.8 \times 2.5 \text { OR } \mathrm{v}=9.8 \times 0.714 \\ & \mathrm{v}=7 \mathrm{~ms}^{-1} \text { or } 6.99 \text { or art } 7.00 \end{aligned}$	M1 A1 [2] M1 A1 [2]	Uses $\mathrm{s}=0+/-\mathrm{gt}^{2} / 2$ Not awarded if - sign "lost" Uses $v^{2}=0+/-2 g$ g or $v=u+/-g t$ Not awarded if - sign "lost"
(ii)	$\begin{aligned} & \mathrm{R}=2 \times 9.8 \sin 60(=16.97=17) \\ & \mathrm{F}=0.2 \times 16.97(=3.395 \text { or } 3.4) \\ & \mathrm{Cmpt} \text { weight }=2 \times 9.8 \cos 60(=9.8) \\ & 2 \mathrm{a}=9.8-3.395 \\ & \mathrm{a}=3.2 \mathrm{~ms}^{-2} \\ & \text { Distance down ramp }=5 \mathrm{~m} \\ & \mathrm{v}^{2}=2 \times 3.2 \times 5 \\ & \mathrm{v}=5.66 \text { or } 5.7 \end{aligned}$	B1 M1 A1ft B1 M1 A1ft B1 M1 A1ft [9]	With incorrect angle, e.g $\mathrm{R}=2 \mathrm{x} 9.8 \cos 60(=9.8) \mathrm{B} 0$ $\mathrm{F}=0.2 \times 9.8(=1.96) \mathrm{M} 1 \mathrm{~A} 1 \sqrt{ }$ Cmpt wt $=2 \times 9.8 \sin 60(=16.97) \mathrm{B} 0$ $2 \mathrm{a}=16.97-1.96 \mathrm{M} 1$ $\mathrm{a}=7.5 \mathrm{Al} \sqrt{ } \mathrm{ft} \operatorname{cv}(\mathrm{R}$ and Cmpt weight) $\begin{aligned} & v^{2}=2 \times 7.5 \times 5 \\ & v=8.66 \text { or } 8.7 \text { Al } \sqrt{ } \quad \mathrm{ft} \mathrm{cv}(\sqrt{ }(10 \mathrm{a})) \end{aligned}$
7 (i)	$\begin{aligned} & \mathrm{p}=4-2 \times 0.4(=3.2) \\ & \mathrm{q}=1-2 \times 0.4(=0.2) \\ & 0.7 \times 3.2-0.3 \times 0.2=(1 \mathrm{x}) \mathrm{v} \\ & \mathrm{v}=2.18 \mathrm{~ms}^{-1} \end{aligned}$	M1 A1 A1 M1 A1 A1 $[6]$	Use of $v=u-0.4 t$ Accept $\mathrm{q}=-0.2$ from $-1+2 * 0.4$ Uses CoLM on reduced velocities

(ii) \mathbf{a}	$\begin{aligned} & 0=1-0.4 \mathrm{t} \\ & \mathrm{t}=2.5 \mathrm{~s} \\ & \mathrm{P}=4 \times 3-0.5 \times 0.4 \times 3^{2} \\ & \mathrm{Q}=1 \times 2.5-0.5 \times 0.4 \times 2.5^{2} \\ & \mathrm{PQ}=10.2+1.25=11.45 \mathrm{~m} \end{aligned}$	B1 B1 B1 [3] M1 A1 M1 A1 A1 A1 [6]	Straight line with larger y intercept slopes towards t axis, but does not reach it. Straight line with negative y intercept slopes towards t axis, and gets to t axis before other line ends. $\mathbf{S R}$ if $\mathrm{t}=2$ in ii give B1 if line stops before axis Finds when Q comes to rest (any method) Uses $\mathrm{s}=\mathrm{ut}-0.4 \mathrm{t}^{2} / 2$ $\left(\mathrm{nb} \quad 0^{(2)}=1^{(2)}-0.4 \mathrm{Q}^{2} / 2 \quad \mathrm{~B} 1\right.$; convincing evidence (graph to scale, or calculation that Q comes to rest and remains at rest at t less than 3, M1A1;graph A1 needs -ve v intercept) SR if $t=2$ in iib, allow M1 for $s=u t-0.4 t^{2} / 2$ And A1 for $\mathrm{PQ}=8.4$

Alternative for Q3 where 7 N and 9 N forces combined initially

3 (i)	$5 \cos 30$ or $5 \sin 60$ or 4.33 $5 \cos 60$ or $5 \sin 30$ or 2.5	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \\ & {[2]} \end{aligned}$	Order immaterial, accept $+/-$. May be awarded in (ii) if no attempt in (i)
(ii)	$\begin{aligned} & \mathrm{Z}^{2}=7^{2}+9^{2}(=130, \mathrm{Z}=11.4017 \ldots) \\ & \text { cos(angle of } \mathrm{Z} \text { with } y \text { axis })=9 / 11.4017 . . \\ & \text { angle of } \mathrm{Z} \text { with } \mathrm{y} \text { axis }=37.8746 \ldots \\ & \text { Angle opposite } \mathrm{R} \text { in triangle of forces }= \\ & 180-(37.8746+90+30) \\ & =22.125(\text { Accept } 22) \\ & \mathrm{R}^{2}=5^{2}+11.4017^{2}-2 \times 5 \times 11.4017 \cos 22.125 \\ & \mathrm{R}(=7.0269)=7.03 \mathrm{~N} \\ & 11.4017^{2}=5^{2}+7.0269^{2}-2 \times 5 \times 7.0269 \cos \mathrm{~A} \\ & (\mathrm{~A}=142.33) \\ & \text { Angle between } \mathrm{R} \text { and y axis }=142.33-30- \\ & 90(=22.33) \\ & \theta(=90-22.33)=67.7 \text { degrees } \end{aligned}$	M1* A1 D*M1 A1 D*M1 A1 [6]	Z is resultant of 7 N and 9 N forces only R is resultant of all 3 forces Complete method Cosine rule to find R Or Sine Rule. A is angle between R and 5 N forces Complete method θ is angle between R and x axis

4729 Mechanics 2

$\mathbf{1}$	$(20 \sin \theta)^{2}=2 \times 9.8 \times 17$	M1	or B2 for $\max h t=v^{2} \sin ^{2} \theta / 2 \mathrm{~g}$
		A1	
	$\sin \theta=\sqrt{ }(2 \times 9.8 \times 17) \div 20$	M1	subst. values in above
	$\theta=65.9^{\circ}$	A1 $\mathbf{4}$	

$\mathbf{2}$	$\bar{x}=8$	B1	
	T $\sin 30^{\circ} \times 12=8 \times 2 \times 9.8$	M1	ok if g omitted
		A1 ft	ft their \bar{x}
	$\mathrm{~T}=26.1$	A1 $\mathbf{4}$	

3 (i)	$140 \times \mathrm{X}=40 \times 70$	M1	
	$\mathrm{X}=20 \mathrm{~N}$	A1	
	at $F 20 \mathrm{~N}$ to the right	B1	inspect diagram
	at $G 20 \mathrm{~N}$ to the left	B1 4	SR B1 for correct directions only
(ii)	$\mathrm{d}=(2 \times 40 \sin \Pi / 2) \div 3 \Pi / 2$	M1	must be radians
		A1	
	$\mathrm{d}=17.0$	A1	16.98 160/3П (8/15П m)
	$70 \bar{y}=100 \times 60+217 \times 10$	M1	
		A1 ft	$\mathrm{ft} 200+$ their d or $2+$ their d (m)
	$\bar{y}=117$	A1 6	116.7 10

$\mathbf{4}$ (i)	$P / 10-800 \mathrm{x} 9.8 \sin 12^{\circ}-100 k=800 \times 0.25$	M 1	$\mathrm{P} / 10=\mathrm{D}_{1}$ ok
		A1	D_{1} ok
	$P / 20-400 k=800 \times 0.75$	M 1	$\mathrm{P} / 20=\mathrm{D}_{2}$ ok
		A1	$\mathrm{D}_{1}=2 \mathrm{D}_{2}$ needed for this A1
	solving above	M1	
	$k=0.900$	A1	AG 0.9000395
	$P=19200$	A1 7	or $19.2 \mathrm{~kW}($ maybe in part (ii) $)$
(ii)	$0.9 v^{2}=28800 / v$	M1	ok if $19200 / v$
	solving above	M1 $*$	$\left(v^{3}=32000\right)$
	$v=31.7 \mathrm{~m} \mathrm{~s}^{-1}$	A1 3	

$\mathbf{5}$ (i)	$0.8 S$	B1	vert comp of S
	$0.6 T$	B1	vert comp of T
	$S \cos \alpha=T \cos \beta+0.2 \times 9.8$	M1	
	$0.8 S=0.6 T+1.96$	aef	A1 $\mathbf{4}$
(ii)	$0.6 S$	AG $\quad 4 S=3 T+9.8$	
	$0.8 T$	B1	
	$0.2 \times 0.24 \times 8^{2}$	B1	$3.072 \quad 384 / 125$
	$S \sin \alpha+T \sin \beta=0.2 \times 0.24 \times 8^{2}$	M1	must be $m r \omega^{2}$
	$6 S+8 T=30.72$	A1	aef
	eliminate S or T	M1	
	$S=3.4 \mathrm{~N}$	A1	3.411
	$T=1.3 \mathrm{~N}$	A1 $\mathbf{8}$	1.282

6 (i)	$\mathrm{x}=\mathrm{v} \cos \theta \mathrm{t}$	B1	
	$\mathrm{y}=v \sin \theta \mathrm{t}-1 / 2 \times 9.8 \mathrm{t}^{2}$	B1	or g
	substitute $\mathrm{t}=\mathrm{x} / \mathrm{v} \cos \theta$	M1	
	$\mathrm{y}=\mathrm{xtan} \theta-4.9 \mathrm{x}^{2} / \mathrm{v}^{2} \cos ^{2} \theta$	A1 4	AG
(ii)	Sub $\mathrm{y}=-\mathrm{h}, \mathrm{x}=\mathrm{h}, \mathrm{v}=14, \theta=30$	M1	signs must be correct
	$-h=h / \sqrt{3}-h^{2} / 30$	A1	aef
	solving above	M1	
	$h=47.3$	A1 4	
(iii)	$v_{\mathrm{v}}{ }^{2}=\left(14 \sin 30^{\circ}\right)^{2}-2 \times 9.8 \times(-47.3)$ (double negative needed) ft their -47.3	M1	$14 \cos 30^{\circ} \mathrm{t}=47.3 \mathrm{ft} \& \mathrm{v}_{\mathrm{v}}=14 \sin 30^{\circ}-9.8 \mathrm{t}$
		A1 ft	$\mathrm{t}=3.90$ (or dy/dx $=1 / \sqrt{3}-\mathrm{x} / 15$ etc ft)
	$\nu_{\mathrm{v}}= \pm 31.2$	A1	$v_{v}= \pm 31.2(\tan \alpha=1 / \sqrt{3}-47.3 / 15)$
	$\tan ^{-1}\left(31.2 / 14 \cos 30^{\circ}\right)$	M1	$\tan ^{-1}\left(31.2 / 14 \cos 30^{\circ}\right)$
	$\alpha=68.8^{\circ}$ below horiz/21.2 ${ }^{\circ}$ to d'vert.		68.8%....
(iv)	$1 / 2 \mathrm{mx} 14^{2}+\mathrm{mx} 9.8 \times 47.3=1 / 2 \mathrm{mv}^{2}$	M1	$\mathrm{ft}\left(12.1^{2}+31.2^{2}\right)$
	$\mathrm{v}=33.5$		33.5

7 (i)	$\mathrm{p}=4 \mathrm{~m} \mathrm{~s}^{-1}$	B1	P's first speed
	$0.8=0.2 \mathrm{p}_{1}+0.3 \mathrm{q}_{1}$	M1	
		A1	
	$0.5=\left(\mathrm{q}_{1}-\mathrm{p}_{1}\right)^{\prime} / 4$	M1	
		A1	
	solving above	M1	
	$\mathrm{q}_{1}=2.4 \quad 12 / 5$	A1	Q's first speed
	$\mathrm{p}_{1}=0.4 \quad 2 / 5$	A1 8	may be in (ii). SR 1 for both negative
(ii)	$0.8=0.2 \mathrm{p}_{2}+0.3 \mathrm{q}_{2}$	M1	
		A1	
	$0.5=\left(\mathrm{p}_{2}-\mathrm{q}_{2}\right)^{\prime} / 2$	M1	
		A1	
	solving above	M1	
	$\mathrm{p}_{2}=2.2 \quad 11 / 5$	A1	
	$\mathrm{q}_{2}=1.2 \quad 6 / 5$	A1 7	
(iii)	$\mathrm{R}=0.3 \times 1.2^{2} / 0.4$	M1	
	$\mathrm{R}=1.08 \mathrm{~N}$	A1 2	17

4730 Mechanics 3

1 (i)	For triangle sketched with sides (0.5)2.5 and (0.5)6.3 and angle θ correctly marked OR Changes of velocity in i and j directions $2.5 \cos \theta-6.3$ and $2.5 \sin \theta$, respectively. For sides $0.5 \times 2.5,0.5 \times 6.3$ and 2.6 (or $2.5,6.3$ and 5.2) OR $-2.6 \cos \alpha=0.5(2.5 \cos \theta-6.3)$ and $2.6 \sin \alpha=0.5(2.5 \sin \theta)$ $\left[5.2^{2}=2.5^{2}+6.3^{2}-2 \times 2.5 \times 6.3 \cos \theta\right.$ OR $2.6^{2}=0.5^{2}\left\{(2.5 \cos \theta-6.3)^{2}+(2.5 \sin \theta)^{2}\right]$ $\cos \theta=0.6$	B1 B1ft M1 A1 [4]	May be implied in subsequent working. May be implied in subsequent working. For using cosine rule in triangle or eliminating α. AG
(ii)	$\begin{aligned} \sin \alpha=2.5 \times 0.8 / 5.2 & \text { OR } \\ -2.6 \cos \alpha & =0.5(2.5 \times 0.6-6.3) \end{aligned}$ Impulse makes angle of 157° or 2.75° with original direction of motion of P .	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$ [4]	For appropriate use of the sine rule or substituting for θ in one of the above equations in θ and α For evaluating $(180-\alpha)^{\circ}$ or $(\pi-\alpha)^{c}$ SR (relating to previous 2 marks; max 1 mark out of 2) $\alpha=23^{\circ} \text { or } 0.395^{\mathrm{C}}$

2 (i)	$\begin{aligned} & {[70 \mathrm{x} 2=4 \mathrm{X}-4 \mathrm{Y}]} \\ & \mathrm{X}-\mathrm{Y}=35 \end{aligned}$	M1 A1 [2]	For taking moments about A for AB (3 terms needed)
(ii)	$\left[\begin{array}{l} {[110 \times 3=-4 X+6 Y]} \\ 2 X-3 Y+165=0 \end{array}\right.$	M1 A1 [2]	For taking moments about C for BC (3 terms needed) AG
(iii)	$\begin{aligned} & \mathrm{X}=270, \mathrm{Y}=235 \\ & \text { Magnitude is } 358 \mathrm{~N} \end{aligned}$	M1 Alft M1 Alft [4]	For attempting to solve for X and Y ft any (X, Y) satisfying the equation given in (ii) For using magnitude $=\sqrt{X^{2}+Y^{2}}$ ft depends on all 4 Ms

3 (i)	$\left[\mathrm{T}_{\mathrm{A}}=(24 \times 0.45) / 0.6, \mathrm{~T}_{\mathrm{B}}=(24 \times 0.15) / 0.6\right]$ $\mathrm{T}_{\mathrm{A}}-\mathrm{T}_{\mathrm{B}}=18-6=12=\mathrm{W} \rightarrow \mathrm{P}$ in equil' m .	M1 A1 [2]	For using $\mathrm{T}=\lambda \mathrm{x} / \mathrm{L}$ for PA or PB
(ii)	Extensions are $0.45+\mathrm{x}$ and $0.15-\mathrm{x}$ Tensions are $18+40 \mathrm{x}$ and $6-40 \mathrm{x}$	B1 B1 [2]	AG From $\mathrm{T}=\lambda \mathrm{x} / \mathrm{L}$ for PA and PB
(iii)	$\begin{aligned} & {[12+(6-40 \mathrm{x})-(18+40 \mathrm{x})=12 \ddot{x} / \mathrm{g}]} \\ & \ddot{x}=-80 \mathrm{gx} / 12 \rightarrow \text { SHM } \\ & \text { Period is } 0.777 \mathrm{~s} \end{aligned}$	M1 A1 A1 $\ldots .[3]$	For using Newton's second law (4 terms required) AG From Period $=2 \pi \sqrt{12 /(80 g)}$
(iv)	$\begin{aligned} & {\left[\mathrm{v}_{\text {max }}=0.15 \sqrt{80 \mathrm{~g} / 12}\right.} \\ & \quad \text { or } \mathrm{v}_{\text {max }}=2 \pi \mathrm{x} 0.15 / 0.777 \\ & \text { or }_{1 / 2}(12 / \mathrm{g}) \mathrm{v}_{\text {max }}^{2}+\mathrm{mg}(0.15) \\ & \\ & \left.+24\left\{0.45^{2}+0.15^{2}-0.6^{2}\right\} /(2 \mathrm{x} 0.6)=0\right] \end{aligned}$ Speed is $1.21 \mathrm{~ms}^{-1}$	M1 [2]	For using $\mathrm{v}_{\text {max }}=\mathrm{An}$ or $\mathrm{v}_{\text {max }}=2 \pi \mathrm{~A} / \mathrm{T}$ or conservation of energy (5 terms needed)

4 (i)	$\begin{aligned} & \text { Loss in } \mathrm{PE}=\mathrm{mg}(0.5 \sin \theta) \\ & {\left[\begin{array}{l} \left.1 / 2 \mathrm{mv}^{2}-1 / 2 \mathrm{~m} 3^{2}=\operatorname{mg}(0.5 \sin \theta)\right] \\ \mathrm{v}^{2}=9+9.8 \sin \theta \end{array}\right.} \end{aligned}$	$\begin{aligned} & \hline \text { B1 } \\ & \\ & \text { M1 } \\ & \text { A1 } \\ & {[3]} \\ & \hline 0 \end{aligned}$	For using KE gain $=$ PE loss (3 terms required) AG
(ii)	$\begin{aligned} & \mathrm{a}_{\mathrm{r}}=18+19.6 \sin \theta \\ & {\left[\mathrm{ma}_{\mathrm{t}}=\mathrm{mg} \cos \theta\right]} \\ & \mathrm{a}_{\mathrm{t}}=9.8 \cos \theta \end{aligned}$	$\begin{gathered} \text { B1 } \\ \text { M1 } \\ \text { A1 } \\ {[3]} \end{gathered}$	Using $a_{r}=v^{2} / 0.5$ For using Newton's second law tangentially
(iii)	$\begin{aligned} & {\left[\mathrm{T}-\mathrm{mg} \sin \theta=\mathrm{ma}_{\mathrm{r}}\right]} \\ & \mathrm{T}-1.96 \sin \theta=0.2(18+19.6 \sin \theta) \\ & \mathrm{T}=3.6+5.88 \sin \theta \\ & \theta=3.8 \end{aligned}$	M1 A1 A1 B1 [4]	For using Newton's second law radially (3 terms required) AG

5	Initial \mathbf{i} components of velocity for A and B are $4 \mathrm{~ms}^{-1}$ and $3 \mathrm{~ms}^{-1}$ respectively. $\begin{aligned} & 3 \times 4+4 \times 3=3 a+4 b \\ & 0.75(4-3)=b-a \\ & a=3 \end{aligned}$ Final \mathbf{j} component of velocity for A is $3 \mathrm{~ms}^{-1}$ Angle with 1.o.c. is 45° or 135°	B1 M1 A1 M1 A1 M1 A1 B1 M1 A1ft [10]	May be implied. For using p.c.mmtm. parallel to l.o.c. For using NEL For attempting to find a Depends on all three M marks May be implied For using $\tan ^{-1}\left(v_{\mathbf{j}} / v_{\mathbf{i}}\right)$ for A ft incorrect value of a $(\neq 0)$ only
			SR for consistent $\sin / \cos \operatorname{mix}(\max 8 / 10)$ $3 \times 3+4 \times 4=3 a+4 b$ and $\mathrm{b}-\mathrm{a}=0.75(3-4)$ M1 M1 as scheme and A1 for both equ's $\mathrm{a}=4 \mathrm{M} 1$ as scheme A1 j component for A is $4 \mathrm{~ms}^{-1} \mathrm{~B} 1$ Angle $\tan ^{-1}(4 / 4)=45^{\circ}$ M1 as scheme A1

6(i)	Initial speed in medium is $\sqrt{2 g \times 10} \quad(=14)$ $\begin{aligned} & {[0.125 \mathrm{dv} / \mathrm{dt}=0.125 \mathrm{~g}-0.025 \mathrm{v}]} \\ & \int \frac{5 d v}{5 g-v}=\int d t \\ & -5 \ln (5 \mathrm{~g}-\mathrm{v})=\mathrm{t}(+\mathrm{A}) \\ & {[-5 \ln 35=\mathrm{A}]} \\ & \mathrm{t}=5 \ln \{35 /(49-\mathrm{v})\} \\ & \mathrm{v}=49-35 \mathrm{e}^{-0.2 \mathrm{t}} \end{aligned}$	B1 M1 M1 A1 M1 A1 M1 A1 [8]	For using Newton's second law with $\mathrm{a}=\mathrm{dv} / \mathrm{dt}$ (3 terms required) For separating variables and attempt to integrate For using $v(0)=14$ For method of transposition AG
(ii)	$\mathrm{x}=49 \mathrm{t}+175 \mathrm{e}^{-0.2 \mathrm{t}}(+\mathrm{B})$ $\left[x(3)=\left(49 \times 3+175 \mathrm{e}^{-0.6}\right)-(0+175)\right]$ Distance is 68.0 m	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \\ & \text { M1 } \\ & \text { A1 } \\ & {[4]} \end{aligned}$	For integrating to find $\mathrm{x}(\mathrm{t})$ For using limits 0 to 3 or for using $\mathrm{x}(0)=0$ and evaluating $\mathrm{x}(3)$

\begin{tabular}{|c|c|c|c|}
\hline 7(i) \& \[
\begin{aligned}
\& \text { Gain in EE }=20 \mathrm{x}^{2} /(2 \mathrm{x} 2) \\
\& \\
\& \text { Loss in GPE }=0.8 \mathrm{~g}(2+\mathrm{x}) \\
\& {\left[1 / 20.8 \mathrm{v}^{2}=(15.68+7.84 \mathrm{x})-5 \mathrm{x}^{2}\right]} \\
\& \mathrm{v}^{2}=39.2+19.6 \mathrm{x}-12.5 \mathrm{x}^{2}
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { B1 } \\
\& \text { B1 } \\
\& \text { M1 } \\
\& \text { A1 } \\
\& {[4]}
\end{aligned}
\] \& \begin{tabular}{l}
Accept 0.8 gx if gain in KE is
\[
1 / 20.8\left(v^{2}-19.6\right)
\] \\
For using the p.c.energy
AG
\end{tabular} \\
\hline (ii) \& \begin{tabular}{l}
(a) \\
Maximum extension is 2.72 m \\
(b)
\[
\begin{aligned}
\& {[19.6-25 x=0} \\
\& \left.v^{2}=46.8832-12.5(x-0.784)^{2}\right] \\
\& x=0.784 \text { or } c=46.9
\end{aligned}
\]
\[
\left[\mathrm{v}_{\max }^{2}=39.2+15.3664-7.6832\right]
\] \\
Maximum speed is \(6.85 \mathrm{~ms}^{-1}\) \\
(c)
\[
\begin{aligned}
\& \pm(0.8 \mathrm{~g}-20 \mathrm{x} / 2)=0.8 \mathrm{a} \\
\& \quad \text { or } 2 \mathrm{v} \mathrm{dv} / \mathrm{dx}=19.6-25 \mathrm{x} \\
\& \mathrm{a}= \pm(9.8-12.5 \mathrm{x}) \\
\& \text { or } \ddot{y}=-12.5 \mathrm{y} \text { where } \mathrm{y}=\mathrm{x}-0.784 \\
\& {\left[|\mathrm{a}|_{\max }=|9.8-12.5 \mathrm{x} 2.72|\right.} \\
\& \text { or }\left|\ddot{y_{\max }}\right|=\mid-12.5(2.72-0.784 \mid]
\end{aligned}
\] \\
Maximum magnitude is \(24.2 \mathrm{~ms}^{-2}\)
\end{tabular} \& M1
A1
\([2]\)

M1
A1
M1
A1
$[4]$
M1
A1
A1
M1
A1

$[5]$ \& | For attempting to solve $\mathrm{v}^{2}=0$ |
| :--- |
| For solving $20 \mathrm{x} / 2=0.8 \mathrm{~g}$ or for differentiating and attempting to solve $d\left(v^{2}\right) / d x=0$ or $d v / d x=0$ or for expressing v^{2} in the form $c-a(x-b)^{2}$. |
| For substituting $x=0.784$ in the expression for v^{2} or for evaluating \sqrt{c} |
| For using Newton's second law (3 terms required) or $\mathrm{a}=\mathrm{vdv} / \mathrm{dx}$ |
| For substituting $\mathrm{x}=$ ans(ii)(a) into $\mathrm{a}(\mathrm{x})$ or $\mathrm{y}=\operatorname{ans}(\mathrm{ii})(\mathrm{a})-0.784$ into $\ddot{y}(\mathrm{y})$ |

\hline
\end{tabular}

4732 Probability \& Statistics 1

Note: "(3 sfs)" means "answer which rounds to ... to 3 sfs". If correct ans seen to $\geq 3 \mathrm{sfs}$, ISW for later rounding. Penalise over-rounding only once in paper.

1 (i)	$\begin{aligned} & 0.2^{2}+0.7 \times 0.1 \times 2 \\ & =0.18 \quad \mathbf{A G} \end{aligned}$	M2 $\text { A1 } 3$	0.2^{2} or $0.7 \times 0.1:$ M 1 no errors seen NB $2 \times 0.9 \times 0.1=0.18 \quad$ M0A0
(ii)	$\begin{aligned} & 0.28+2 \times 0.18+3 \times 0.04+4 \times 0.01 \\ & =0.8 \text { oe } \\ & 0.28+2^{2} \times 0.18+3^{2} \times 0.04+4^{2} \times 0.01 \\ & -{ }^{\prime} 0.8^{, 2} \\ & =0.88 \text { oe } \end{aligned}$	$\begin{array}{ll}\text { M1 } & \\ \text { A1 } & \\ \text { M1 } & \\ \text { M1 } & \\ \text { A1 } & 5\end{array}$	```\(\geq 2\) terms correct (excl \(0 \times 0.49\)) \(\div 5\) (or 4 or 10 etc): M0 \(\geq 2\) terms correct (excl \(\left.0^{2} \times 0.49\right)\) dep +ve result cao \(\Sigma(x-\mu)^{2}: 2\) terms: M1; 5 terms M2 \(0.8^{2} \times 0.49+0.2^{2} \times 0.28+1.2^{2} \times 0.18+2.2^{2} \times 0.04+3.2^{2} \times 0.01\)``` SC Use original table, 0.4:B1 0.44: B1
Total		8	
2(i)(a)	$\begin{aligned} & \frac{8736.9-\frac{202 \times 245.3}{7}}{7300-\frac{202^{2}}{7}} \text { or } \frac{1658.24}{1470.86} \\ & =1.127 \ldots \quad(=1.13 \mathrm{AG}) \end{aligned}$	M1 A1 2	correct sub in any correct formula for b eg $\frac{236.8921}{210.1249}$ must see $1.127 \ldots ; \quad$ 1.127... alone: M1A1
(b)	$\begin{aligned} & y-245.3 / 7=1.13(x-202 / 7) \\ & y=1.1 x+2.5(\text { or } 2.4) \text { or } y=1.13 x+2.43 \end{aligned}$	$\begin{array}{ll} \mathrm{M} 1 & \\ \text { A1 } & 2 \end{array}$	$\text { or } a=245.3 / 7-1.13 \times 202 / 7$ 2 sfs suff. $\text { (exact: } y=1.127399 x+2.50934 \ldots)$
(ii)(a)	$(1.1(.) \times 30+.2.5(.))=$.35.5 to 36.5	B1f 1	
(b)	$(1.1(.) \times 100+.2.5(.))=$.112.4 to 115.6	B1f 1	
(iii)	(a) Reliable (b) Unreliable because extrapolated	$\begin{array}{ll} \mathrm{B} 1 & \\ \mathrm{~B} 1 & 2 \end{array}$	Both reliable: B1 (a) more reliable than (b) B1 because (a) within data or (b) outside data B1 Ignore extras
Total		8	
3(i)(a)	$\begin{aligned} & \text { Geo stated } \\ & (1 / 8)^{2}(1 / 8) \\ & 49 / 512 \text { or } 0.0957(3 \mathrm{sfs}) \end{aligned}$	M1 M1 A1 3	or impl. by $(1 / 8)^{n}(1 / 8)$ or $(1 / 8)^{n}(1 / 8)$ alone
(b)	$(1 / 8)^{3}$ alone $343 / 512$ or $0.670(3 \mathrm{sfs})$ allow 0.67	$\begin{array}{ll} \mathrm{M} 2 \\ \mathrm{~A} 1 & 3 \end{array}$	or $1-\left(/_{8}+/_{8 \times}+/_{8}+\left(/_{8}\right)^{2} \times 18\right)$: M2 one term incorrect, omit or extra: M1 $1-(7 / 8)^{3}$ or $(7 / 8)^{2}$ alone: M1
(ii)		B1	
(iii)	Binomial stated or implied ${ }^{15} \mathrm{C}_{2}(7 / 8)^{13}(1 / 8)^{2}$ $=0.289(3 \mathrm{sfs})$	M1 M1 A1 3	eg by $(1 / 8)^{a}(1 / 8)^{\text {b }} \quad(a+b=15, a, b \neq 1)$, not just ${ }^{n} \mathrm{C}_{r}$
Total		10	
4 (i)		M1 A1 M1dep M1dep A1 5	$\begin{aligned} & \text { attempt ranks } \\ & \text { correct ranks } \\ & S_{x x} \text { or } S_{y y}=55-15^{2} /_{5}(=10) \text { or } S_{y y}=39-15^{2} / 5(=-6) \\ & -6 / \sqrt{ }(10 \times 10) \end{aligned}$

| (ii) | $1 \& 3$ | B1ind
 Largest neg r_{s}
 or large neg r_{s} or strong neg corr'n
 or close(st) to -1
 or lowest r_{s} | ft if -1<(i)<-0.9, ans $1 \& 2$
 NOT: furthest from 0 or closest to ± 1
 little corr'n
 most disagreement |
| :--- | :--- | :--- | :--- | :--- |
| Total | 2 | | |

5 (i)	$\begin{aligned} & 68 \\ & 75-59 \\ & =16 \\ & \hline \end{aligned}$		$\begin{array}{ll} \hline \text { B1 } & \\ \text { M1 } & \\ \text { A1 } & 3 \end{array}$	attempt $6^{\text {th }} \& 18^{\text {th }}$ or $58-60,74-76 \&$ subtr must be from 75 - 59
(ii)	Unaffected by outliers or extremes (allow less affected by outliers) sd can be skewed by one value		B1 1	NOT: ... by anomalies or freaks easier to calculate
(iii)	Shows each data item, retains orig data can see how many data items can find (or easier to read) mode or modal class can find (or easier to read) frequs can find mean Harder to read med (or Qs or IQR) Doesn't show med (or Qs or IQR) $\mathrm{B} \& \mathrm{~W}$ shows med (or Qs or IQR) B\&W easier to compare meds		B1 $\text { B1 } 2$	NOT: shows freqs shows results more clearly $B \& W$ does not show freqs NOT: B\&W easier to compare B\&W shows spread or variance or skew B\&W shows highest \& lowest Assume in order: Adv, Disadv, unless told Allow disadv of B\&W for adv of S\&L $\&$ vice versa Ignore extras
(iv)	$\begin{aligned} & \mathrm{m}=68.1 \\ & \mathrm{sd}=9.7 \text { (or same) } \end{aligned}$	NOT by restart NOT by restart	$\begin{array}{lll} & \\ \text { B1 } & \\ \text { B1 } & 2 \end{array}$	Restart mean or mean \& sd: 68.1 or $68.087 \& 9.7$ or 9.73 B1 only
Total			8	

6 (i) (a)	$\begin{aligned} & 8! \\ & =40320 \end{aligned}$	$\begin{array}{ll} \hline \text { M1 } \\ \text { A1 } & 2 \end{array}$	Allow ${ }^{4} \mathrm{P}_{4} \&{ }^{3} \mathrm{P}_{3}$ inste. 3! \& 4! thro'out Q6
(b)	$\begin{aligned} & \frac{4}{8} \times 4 / 7 \times 3 / 6 \times 3 / 5 \times 2 / 4 \times 2 / 3 \times 1 / 2 \\ & \times 2 \\ & =1 / 35 \text { or } 0.0286(3 \mathrm{sfs}) \end{aligned}$	M1 M1dep A1 3	$4!\times 4!\div 8!$ $\times 2$ $4!\times 4!+4!\times 4!$ allow $1-$ above for M1 only oe, eg ${ }^{1152 / 40320}$
(ii)(a)	$\begin{aligned} & 4!\times 4! \\ & =576 \end{aligned}$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \end{aligned}$	allow 4! $\times 4!\times 2$ M1
(b)	$1 / 16$ or 0.0625	B1 1	
(c)	Separated by 5 or 6 qus stated or illus $\begin{aligned} & 1 / 4 \times 1 / 4 \times 3 \text { or }{ }^{1 / 16} \times 3 \\ & (1 / 4 \times 1 / 4 \text { or } 1 / 16 \text { alone or } \times(2 \text { or } 6): \\ & \text { M1) } \\ & 3 / 16 \text { or } 0.1875 \text { or } 0.188 \end{aligned}$	M1 M2 A1 4	$\begin{aligned} & \text { allow } 5 \text { only or } 6 \text { only or }(4,5 \text { or } 6) \\ & \text { can be impl by next M2 or M1 } \\ & 3!\times 3!\times 3 \text { (} \begin{array}{l} \text { (}!\times 3!\text { alone or } \times(2 \text { or } 6) ; \text { or }(3!+3!) \times 3: \text { M1 }) \\ (\div 576) \end{array} \end{aligned}$ correct ans, but clearly B, J sep by 4: M0M2A0 $\begin{aligned} & \text { 1- P(sep by } 0,1,2,3,(4)) \\ & 1-\left(1 / 4+{ }^{1} / 4 / 4 \times 1 / 4+{ }^{3}+1 / 4 \times 1 / 2\right) \\ & \text { or } 1-\left(1 / 44^{1} / 4+1 / 2 \times 1 / 4+{ }^{3} / 4 \times 1 / 4+1 \times 1 / 4+3 / 4 \times 1 / 4\right) \quad \text { M2 } \\ & \text { (one omit: M1) } \end{aligned}$
Total		12	

7 (i)	Binomial $n=12, p=0.1$ Plates (or seconds) independent oe Prob of fault same for each plate oe	$\begin{array}{ll} \hline \text { B1 } & \\ \text { B1 } & \\ \text { B1 } & \\ \text { B1 } & 4 \\ \hline \end{array}$	B(12, 0.1) : B2 NOT: batches indep Comments must be in context Ignore incorrect or irrelevant
(ii)(a)	$\begin{aligned} & 0.9744-0.8891 \text { or }{ }^{12} \mathrm{C}_{3} \times 0.9^{9} \times 0.1^{3} \\ & =0.0852 \text { or } 0.0853(3 \mathrm{sfs}) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } 2 \end{aligned}$	
(b)	$\begin{aligned} & 1-0.2824 \text { or } 1-0.9^{12} \\ & =0.718(3 \mathrm{sfs}) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \quad 2 \end{aligned}$	allow $1-0.6590$ or $1-0.9^{11}$
(iii)	" 0.718 " and $1-$ " 0.718 " used $\begin{aligned} (1-0.718)^{4} & +4(1-0.718)^{3} \times 0.718 \\ & +{ }^{4} \mathrm{C}_{2}(1-0.718)^{2} \times 0.718^{2} \end{aligned}$ $=0.317(3 \mathrm{sfs})$	$\begin{aligned} & \text { B1 } \\ & \text { M2 } \\ & \\ & \text { A1 } \quad 4 \\ & \hline \end{aligned}$	$\mathrm{ft}(\mathrm{b})$ for B1M1M1 M1 for any one term correct (eg opp tail or no coeffs) $1-\mathrm{P}(3$ or 4$)$ follow similar scheme M 2 or M1 $1-$ correct wking $(=0.623)$ B1M2 cao
Total		12	

Total 72 marks

4733 Probability \& Statistics 2

1	$\begin{aligned} & U \sim \mathrm{~B}(800,0.005) \approx \mathrm{Po}(4) \\ & \mathrm{P}(U \leq 6) \\ & \\ & n>50 / \text { large }, n p<5 / p \text { small } \\ & \hline \end{aligned}$		$\operatorname{Po}(n p)$ stated or implied Tables or formula ± 1 term, e.g. $0.7851,0.9489,0.1107$, not $1-$ Answer 0.889 or a.r.t. 0.8893 Both conditions
2	$\begin{aligned} & \frac{23.625-23}{5 / \sqrt{n}}=2 \\ & \sqrt{n}=16 \end{aligned}$ $n=\mathbf{2 5 6}$	M1 A1 M1 A1	Standardise with $\sqrt{ }$, allow $\sqrt{ } / 2$ errors Equate to 2 or a.r.t. 2.00 , signs correct Solve for $\sqrt{ } n$, needs Φ^{-1}, not from $/ n$ 256 only, allow from wrong signs
3 (i)	(a) (b) $0.42 e^{-0.42}=\mathbf{0 . 6 5 7}$	$\begin{array}{ll} \hline \text { M1 } & \\ \text { A1 } & \\ \text { A1 } & \mathbf{3} \\ \hline \end{array}$	Correct formula for $R=0$ or 1 $\mathrm{P}(0)$, a.r.t. 0.657 P(1), a.r.t. 0.276
(ii)	$\begin{aligned} & \mathrm{Po}(2.1): \\ & 1-\mathrm{P}(\leq 3)=1-0.8386 \\ & . \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \end{aligned}$ A1	Po(2.1) stated or implied Tables or formula, e.g. 0.8386 or 0.6496 or 0.9379 or complement; Answer, in range [0.161, 0.162]
(iii)		B2	At least 3 separate bars, all decreasing Allow histogram. Allow convex $\mathrm{P}(0)<\mathrm{P}(1)$ but otherwise OK: B1 Curve: B1 [no hint of normal allowed]
4 (i)	$\mathrm{H}_{0}: p=0.14$ $\mathrm{H}_{1}: p<0.14$ $\mathrm{B}(22,0.14)$ $\mathrm{P}(\leq 2)=.86^{22}+\left(22 \times .86^{21} \times .14\right)+$ $\left(231 \times .86^{20} \times .14^{2}\right)=\mathbf{0 . 3 8 7 7}$ >0.1 Do not reject H_{0}. Insufficient evidence that company overestimates viewing proportion	B2 M1 A1 A1 B1 M1 A1	Both correct. 1 error, B1, but x or r or \bar{x} etc: 0 $\mathrm{B}(22,0.14)$ stated or implied, e.g. $\mathrm{N}(3.08,2.6488)$ or $\mathrm{Po}(3.08)$ Correct formula for 2 or 3 terms, or $\mathrm{P}(\leq 0)=0.036$ and CR Correct answer, a.r.t. 0.388 , or CR is $=0$ Explicitly compare 0.1 or CR with 2, OK from Po but not from N Correct comparison type and conclusion, needs binomial, at least 2 terms, not from $\mathrm{P}(<2)$ Contextualised, some acknowledgement of uncertainty [SR: Normal: B2 M1 A0 B0 M0] [SR: 2-tailed, or $p>0.14, \mathrm{P}(\geq 2)$: B1M1A2B0M1A1]
(ii)	Selected independently Each adult equally likely to be chosen	$\begin{aligned} & \mathrm{Bi1} \\ & \mathrm{~B} 1 \end{aligned}$	Independent selection Choice of sample elements equally likely (no credit if not focussed on selection) [Only "All samples of size n equally likely": B1 only unless related to Binomial conditions]
5 (i)		$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	Horizontal straight line Symmetrical U-shaped curve Both correct, including relationship between the two and not extending beyond $[-2,2]$, curve through $(0,0)$
(ii)	S is equally likely to take any value T is more likely at extremities	B2	Correct statement about both distributions, $\sqrt{ }$ on their graph [Correct for one only, or partial description: B1] Not "probability of S is constant", etc.
(iii)	$\begin{aligned} & \frac{5}{64} \int_{-2}^{2} x^{6} d x=\frac{5}{64}\left[\frac{x^{7}}{7}\right]_{-2}^{2}\left[=\frac{20}{7}\right] \\ & -0^{2} \\ & =\frac{20}{7} \end{aligned}$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \\ & \mathrm{~B} 1 \\ & \\ & \mathrm{~A} 1 \end{aligned}$	Integrate $x^{2} \mathrm{~g}(x)$, limits $-2,2$ Correct indefinite integral [$=5 x^{7} / 448$] 0 or 0^{2} subtracted or $\mathrm{E}(X)=0$ seen, not $\int x^{2} \mathrm{f}(x) \mathrm{d} x-\int x \mathrm{f}(x) \mathrm{d} x$ Answer $\frac{20}{7}$ or $2 \frac{6}{7}$ or a.r.t. 2.86, don't need 0

6 (i)	$\begin{aligned} & 50.0 \pm 1.96 \sqrt{\frac{20.25}{81}}=50.0 \pm 0.98 \\ & =49.02,50.98 \\ & \bar{W}<49.02 \text { and } \bar{W}>50.98 \end{aligned}$	M1 B1 A1A1 A1 $\sqrt{ } 5$	$50.0 \pm z \sqrt{ }(1.96 / 81)$, allow one sign only, allow $\sqrt{ }$ errors $z=1.96$ in equation (not just stated) Both critical values, min 4 SF at some stage (if both 3SF, A1) CR , allow \leq / \geq, don't need $\bar{W}, \sqrt{ }$ on their CVs, can't recover [Ans 50 ± 0.98 : A1 only] [SR: 1 tail, M1B0A0; 50.8225 or 49. 1775: A1]
(ii)	$\begin{aligned} & \frac{50.98-50.2}{0.5}=1.56 \\ & \frac{49.02-50.2}{0.5}=-2.36 \\ & \Phi(1.56)-\Phi(-2.36)=\mathbf{0 . 9 3 1 5} \end{aligned}$	$\begin{array}{ll} \text { M1 } & \\ \text { A1 } & \\ \text { A1 } & \\ \text { M1 } & \\ \text { A1 } & \mathbf{5} \end{array}$	
(iii)	It would get smaller	B1	No reason needed, but withhold if definitely wrong reason seen. Allow from 1-tail
7 (i)	$\begin{aligned} & \hat{\mu}=\bar{t}=13.7 \\ & \begin{array}{c} \frac{12657.28}{64}-13.7^{2} \quad[=10.08] ; \times \frac{64}{63} \\ \quad=\mathbf{1 0 . 2 4} \end{array} \\ & \begin{array}{c} \mathrm{H}_{0}: \mu=13.1, \mathrm{H}_{1}: \mu>13.1 \\ \frac{13.7-13.1}{\sqrt{10.24 / 64}}=1.5 \text { or } p=0.0668 \\ 1.5<1.645 \text { or } 0.0668>0.05 \end{array} \end{aligned}$ Do not reject H_{0}. Insufficient evidence that time taken on average is greater than 13.1 min	B1 M1 M1 A1 B2 M1 A1 B1 M1 A1 $\mathbf{1 1}$	13.7 stated Correct formula for biased estimate $\times \frac{64}{63}$ used, or equivalent, can come in later Variance or SD 10.24 or 10.2 Both correct. [SR: One error, B1, but x or t or \bar{x} or $\bar{t}, 0$] Standardise, or find CV, with $\sqrt{ } 64$ or 64 $z=$ a.r.t. 1.50 , or $p=0.0668$, or CV $13.758[\sqrt{ }$ on $z]$ Compare $z \& 1.645$, or $p \& 0.05$ (must be correct tail), or $z=1.645 \& 13$ with CV Correct comparison \& conclusion, needs 64 , not $\mu=13.7$ Contextualised, some acknowledgement of uncertainty [13.1-13.7: (6), M1 A0 B1 M0].
(ii)	Yes, not told that dist is normal	B1 1	Equivalent statement, not " n is large", don't need "yes"
8 (i)	N(14.7, 4.41) Valid because $\begin{aligned} & n p=14.7>5 ; n q=6.3>5 \\ & 1-\Phi\left(\frac{15.5-14.7}{\sqrt{4.41}}\right)=1-\Phi(0.381) \\ &=1-0.6484 \\ &=\mathbf{0 . 3 5 1 6} \end{aligned}$	M1 A1 B1 B1 M1 A1 A1 7	Normal, attempt at $n p$ Both parameters correct Check $n p>5 ; \quad$ If both asserted but not both $n q$ or $n p q>5 \quad$ I 14.7 and 6.3 seen: B 1 only $\quad[$ Allow " n large, p close to $1 / 2$ "] Standardise, answer <0.5, no $\sqrt{ } n$ z, a.r.t. 0.381 Answer in range $[0.351,0.352] \quad$ [Exact: M0].
(ii)	$\begin{gathered} \bar{K} \sim \mathrm{~N}(14.7,4.41 / 36) \\ \quad\left[=\mathrm{N}\left(14.7,0.35^{2}\right)\right] \end{gathered}$ Valid by Central Limit Theorem as 36 is large $\begin{aligned} \Phi\left(\frac{14.0+\frac{1}{72}-14.7}{\sqrt{4.41 / 36}}\right) & =\Phi(-1.96) \\ & =\mathbf{0 . 0 2 5} \end{aligned}$	M1 A1 $\sqrt{ }$ B1 M1 A1 A1 A1 7	```Normal, their \(n p\) from (i) Their variance/36 Refer to CLT or large \(n(=36\), not 21\()\), or " \(K \sim \mathrm{~N}\) so \(\bar{K} \sim \mathrm{~N}\) ", not same as (i), not \(n p>5, n q>5\) for \(\bar{K}\) Standardise 14.0 with 36 or \(\sqrt{ } 36\) cc included, allow 0.5 here, e.g. \(14.5-14.7\) \(z=-1.96\) or -2.00 or -2.04 , allow + if answer \(<0.5\) 0.025 or 0.0228 [0.284 loses last 2] [\(\mathrm{Po}(25.2\)) etc: probably 0\(]\)```
OR:	$\begin{aligned} & \mathrm{B}(756,0.7) \approx \mathrm{N}(529.2,158.76) \\ & \begin{aligned} \Phi\left(\frac{504.5-529.2}{\sqrt{158.76}}\right) & =\Phi(-1.96) \\ & =\mathbf{0 . 0 2 5} \end{aligned} \end{aligned}$	$\begin{aligned} & \text { M1M1A1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	$\times 36$; N(529.6,...); 158.76 CLT as above, or $n p>5, n q>5$, can be asserted here Standardise 14×36 cc correct and $\sqrt{ } n p q$ 0.025 or 0.0228

4734 Probability \& Statistics 3

\begin{tabular}{|c|c|c|c|}
\hline 1 \& \(T\) has a Poisson distribution
\[
\begin{aligned}
\mathrm{E}(T) \& =28 \times 0.75+4 \times 6.4 \\
\& =46.6 \\
\operatorname{Var}(T) \& =46.6
\end{aligned}
\] \& \[
\begin{array}{ll}
\hline \text { B1 } \& \\
\& \\
\text { M1 } \& \\
\text { A1 } \& \\
\text { B1 } \sqrt{ } \& 4
\end{array}
\] \& \begin{tabular}{l}
From sum of Poissons \\
Ft \(\mathrm{E}(T)\) only if Poisson
\end{tabular} \\
\hline \begin{tabular}{l}
2 (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
Use \(\mathrm{F}\left(Q_{3}\right)=0.75\) or \(\int_{Q_{3}}^{\infty} \frac{1}{5} e^{\frac{1}{4} u} \mathrm{~d} u=0.25\) \\
Solve to obtain \(Q_{3}=4.65 \mathrm{AEF}\) eg \(4 \ln (16 / 5)\)
\[
\mathrm{f}(u)= \begin{cases}\frac{1}{5} \mathrm{e}^{u} \& u<0 \\ \frac{1}{5} \mathrm{e}^{-\frac{1}{4} u} \& u \geq 0\end{cases}
\]
\end{tabular} \& \begin{tabular}{l}
M1 \\
M1A1 3
\(\qquad\) \\
B1 \\
B1 \\
2
\end{tabular} \& \begin{tabular}{l}
M1 for solving similar eqn A0 for \(\geq 4.65\)
\(\qquad\) \\
\(\mathrm{u}<0\) unless evidence of \(\int\)
\[
u \geq 0
\]
\end{tabular} \\
\hline \begin{tabular}{l}
3 (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
Use \(28 \pm z s\)
\[
\begin{aligned}
\& z=2.326 \\
\& s^{2}=28 \times 72 / 1200 \\
\& (25.0,31.0)
\end{aligned}
\]
\[
2 \times 2.326 \sqrt{ }(0.28 \times 0.72 / n) \leq 0.05 \mathrm{AEF}
\] \\
Solve to obtain \(n\) \\
Smallest \(n=1745\) \\
e.g. Variance is an approximation
\end{tabular} \& \begin{tabular}{ll}
M1 \& \\
B1 \& \\
B1 \& \\
A1 \& 4 \\
------- \\
M1 \& \\
M1 \& \\
A1 \& \\
B1 \& 4
\end{tabular} \& \begin{tabular}{l}
Accept \(\mathrm{s}=\mathrm{c} / \sqrt{\mathrm{n}}\) for M1 \\
Accept 0.28 with corresponding s \\
Or 1199 \\
Accept \((25,31)\) \\
Or \(=\) or \(\geq\) \\
Solving similar equn \\
Accept 1746 ,1750 \\
Or normal is approx or \\
Or ponly an estimate
\end{tabular} \\
\hline \begin{tabular}{l}
4 (i) \\
(ii) \\
(iii)
\end{tabular} \& \& \begin{tabular}{ll}
B1 \& \(\mathbf{1}\) \\
\hdashline M1 \& \\
A1 \& \\
A`1 \& \(\mathbf{3}\) \\
------- \\
M1 \& \\
M1 \& \\
A1 \& \(\mathbf{3}\)
\end{tabular} \& \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 5 (i)
(ii)

(iii) \& \begin{tabular}{l}
$\mathrm{H}_{0}: \mu_{2}=\mu_{1}, \mathrm{H}_{1}: \mu_{2}>\mu_{1}$, where μ_{1} and μ_{2} are the mean concentrations in the lake before and after the spillage respectively
$$
\begin{aligned}
& \bar{X}_{2}-\bar{X}_{1} \geq z s \\
& \mathrm{z}=1.645 \\
& \mathrm{~s}=0.24 \sqrt{ }(1 / 5+1 / 6) \\
& \geq 0.2391 \\
& ------------------ \\
& \mathrm{P}\left(\bar{X}_{2}-\bar{X}_{1}<0.2391\right) \\
& z=[0.2391-0.3] / \mathrm{s} \\
& p=0.3376
\end{aligned}
$$

This is a large probability for this error

 \&

B1 \&

B1 \& $\mathbf{2}$

\hdashline------

M1 \&

A1 \&

B1 \&

A1 \& $\mathbf{4}$

\hline M1 \&

\hline \&

M1 \&

A1 \&

B1 \& 4

 \&

For both hypotheses Allow in words if population mean used.


```
Accept \(>,=,<. \leq, t s\) \\
Or >; 0.239
``` \\
May be implied \\
ART 0.337 or 0.338 \\
Relevant comment
\end{tabular} \\
\hline \begin{tabular}{l}
6 (i) \\
(ii)
\end{tabular} & \begin{tabular}{l}
Use \(B \sim \mathrm{~B}(29,0.3), G \sim \mathrm{~B}(26,0.2)\) \\
\(\mathrm{E}(F)=29 \times 0.3+26 \times 0.2=13.9\) \\
\(\operatorname{Var}(F)=29 \times 0.3 \times 0.7+26 \times 0.2 \times 0.8=10.25\) \\
\(B: n p=8.7, n q=20.3\) \\
\(G: n p=5.2, n q=20.8\) \\
All exceed 5, so normal approximation valid for each \\
\(F \sim \mathrm{~N}(13.9,10.25)\) (approximately) \\
(Requires \(\mathrm{P}(F \leq n)=0.99\)) \\
\([n+0.5-13.9] / \sqrt{ }(10.25) ;=2.326\), their 10.25
\[
n=20.85
\] \\
Need to have 21 spares available \\
SR Using \(\mathrm{B}(55,0.2527)\) : \(\mathrm{B} 1 ; \mathrm{M} 1(\mathrm{~N}(13.9,10.39)\); \\
M1B1M1A0 (Max 5/8)
\end{tabular} & M1
M1A1
M1A1 5

B2
M1 \(\sqrt{ }\)
M1B1
A1
M1
A1 & --------------------------------------
Must check numerically
B1 for checking one distribution
Use normal. May be implied
Standardise
M0 if variance has divisors
cc
Solving similar
No cc, lose last A1 \((\mathrm{n}=22)\)
Wrong cc, lose A1A1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{|c|}
7 (i) \\
\\
\\
\\
\\
\\
\\
\\
\\
(ii)
\end{tabular} & \begin{tabular}{l}
Requires population of (2nd mark - 1st mark) to be normally distributed \\
\(\mathrm{H}_{\mathrm{o}}: \mu_{d}=0, \mathrm{H}_{1}: \mu_{d}>0\) \\
\(\mathrm{T}_{2}-\mathrm{T}_{1}:-1-120-2232\)
\[
\bar{d}=0.625, \quad s^{2}=3.411\left(3^{23} / 56 \text { or }{ }^{191} / 56\right)
\] \\
Use 2.998
\[
\text { EITHER: } \begin{aligned}
t & =0.625 / \sqrt{ }(3.411 / 8) \\
& =0.957
\end{aligned}
\] \\
OR: \(\mathrm{CV}(\mathrm{CR}), \bar{d} \geq 2.998 \sqrt{3.411 / 8}\)
\[
=1.958
\] \\
EITHER \(0.957<2.998\) OR \(0.625<1.958\) \\
Do not reject \(\mathrm{H}_{0}\), there is insufficient evidence of improvement \\
Use \(\mathrm{E}\left(X_{2}-X_{1}+k\right)=0.625+k\) \\
Requires \((0.625+k) / \sqrt{ }(3.411 / 8) \geq 2.998\) \\
Giving \(k \geq 1.33\) \\
Increase each mark by 2
\end{tabular} & \begin{tabular}{l}
B1 \\
M1 \\
B1B1 \\
B1 \\
M1 \\
A1 \\
M1 \\
A1 \\
M1
\(\qquad\) \\
M1 \\
A1 \(\sqrt{ }\) \\
A1 3
\end{tabular} & \begin{tabular}{l}
M0 if clearly z \\
With comparison and conclusion \\
Allow 1.33
\end{tabular} \\
\hline 8 (i) & \[
\begin{aligned}
& \text { Mean }=(20+16+9) / 75 \\
&=0.6 \\
& 3 p=0.6, p=0.2 \mathrm{AG}
\end{aligned}
\] & \begin{tabular}{l}
M1 \\
A1 \\
A1 3
\end{tabular} & \\
\hline (ii) & \begin{tabular}{l}
\(\mathrm{H}_{0}: \mathrm{B}(3, p)\) fits the data \\
\(\left(\mathrm{H}_{1}: \mathrm{B}(3, p)\right.\) does not fit the data) \\
Expected values \\
\(\begin{array}{llll}38.4 & 28.8 & 7.2 & 0.6\end{array}\) \\
Combine last two cells
\[
\begin{aligned}
\chi^{2}= & 5.6^{2} / 38.4+8.8^{2} / 28.8+3.2^{2} / 7.8 \\
& =4.818
\end{aligned}
\] \\
\(4.818>3.841\) \\
Reject \(\mathrm{H}_{0}\) and conclude that there is insufficient evidence that \(\mathrm{B}(3 p)\) fits the data.
\end{tabular} & \begin{tabular}{l}
A1 \\
A1 \\
B1 \\
M1 \\
A1 \(\sqrt{ }\) \\
A1 \\
B1 \(\sqrt{ }\) \\
M1 \\
10
\end{tabular} & \begin{tabular}{l}
Or: \(\mathrm{X} \sim \mathrm{B}(3, \mathrm{p})\) or \(\mathrm{B}(3,0.2)\) \\
Not 'Data fits model' \\
Use \(B(3,0.2) \times 75\) \\
At least 2 correct \\
All correct \\
With one correct \\
At least 2 correct Ft E values \\
Accept 4.82 cao \\
ft 4.818 \\
SR1 If cells not combined: \\
B1M1A1A1B0M1A1A0B1(5.991)M1 \\
SR2:E-values rounded :B1M1A1A1 \\
B1M1A1A0(4.865)B1M1
\end{tabular} \\
\hline (iii) & \(2.74<3.841\), accept \(\mathrm{H}_{0}\) conclude that \(\mathrm{B}(6, p)\) fits the data & \[
\begin{array}{lr}
\text { B1 } & \\
& \mathbf{1} \\
\hline
\end{array}
\] & Accept with no reason if evidence of method in (ii) \\
\hline
\end{tabular}

\section*{4736 Decision Mathematics 1}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 1 & (i) & \[
\begin{gathered}
\hline A \\
614 \\
198 \\
693
\end{gathered}
\] & \[
\begin{gathered}
\hline B \\
416 \\
891 \\
396 \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& \hline C \\
& \hline \\
& 1 \\
& 2 \\
& 3
\end{aligned}
\] & \[
\begin{gathered}
\hline D \\
198 \\
693 \\
297 \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& (A=198) \\
& (A=693)
\end{aligned}
\] & \[
\begin{aligned}
& \hline \text { M1 } \\
& \text { A1 } \\
& \text { M1 } \\
& \text { A1 }
\end{aligned}
\] & \begin{tabular}{l}
\(A, B\) and \(C\) correct for first pass \(D=198\) on first pass \\
sca at second and third passes Second and third passes correct
\end{tabular} & [4] \\
\hline & (ii) & 0 & & & & & B1 & 0 & [1] \\
\hline & (iii) & To make & algo & m & nate & & B1 & So that it does not get stuck in a loop & [1] \\
\hline \multicolumn{10}{|c|}{Total \(=6\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 2 & (i) & eg & M1
A1 & \begin{tabular}{l}
Graph need not be simple or planar \\
A graph with five vertices and at least three correct vertex orders \\
A graph with five vertices of orders \(1,2,2,3,4\)
\end{tabular} & [2] \\
\hline & (ii) & \begin{tabular}{l}
Semi-Eulerian \\
It has exactly two odd nodes
\end{tabular} & M1
A1 & \begin{tabular}{l}
Unless their graph was not connected, in which case the answer is 'neither' \\
(Unless their graph was not connected, in which case follow this through)
\end{tabular} & [2] \\
\hline & (iii) & \begin{tabular}{l}
A tree with five vertices would only have four arcs, but this graph has six Or \\
A tree must have at least two vertices of order 1
\end{tabular} & B2 & Give B1 for an incomplete reason, eg 'too many arcs' or 'it has a cycle' & [2] \\
\hline \multicolumn{5}{|r|}{Total \(=\)} & 6 \\
\hline
\end{tabular}

ANSWERED ON INSERT
\begin{tabular}{|c|c|c|c|c|c|}
\hline 3 & (i) & \begin{tabular}{l}
\(A B=9\) \\
\(D F=14\) \\
\(B D=16\) \\
\(C D=18\) \\
\(F G=20\) \\
\(\epsilon F=22\) \\
\(E G=23\) \\
EF -26 \\
\(A C=27\)
\(D F=28\) \\
Total weight \(=100\) \\
\(D G=31\) \\
\(B E=37\)
\end{tabular} & \begin{tabular}{l}
M1 \\
A1 \\
M1 \\
A1 \\
B1
\end{tabular} & \begin{tabular}{l}
Not selecting \(C F\) (working seen on list) Selecting correct arcs (working seen on list) \\
A spanning tree drawn Correct (minimum) spanning tree drawn
\[
100 \text { cao }
\]
\end{tabular} & [5] \\
\hline
\end{tabular}

ANSWERED ON INSERT
\begin{tabular}{|c|c|c|c|c|}
\hline 4 (i) & 8 & B1 & cao & [1] \\
\hline (ii) & 1 comparison and 1 swap & B1 & 1 and 1 & [1] \\
\hline (iii) & \begin{tabular}{l}
766521138862672834 \\
2 comparisons and 1 swap
\end{tabular} & \[
\begin{aligned}
& \hline \text { B1 } \\
& \text { B1 }
\end{aligned}
\] & \begin{tabular}{l}
Correct list (complete) \\
2 and 1
\end{tabular} & [2] \\
\hline (iv) & & M1
M1
A1

M1
A1
A1 & \begin{tabular}{l}
Underlined values correct in \(3^{\text {rd }}\) and \(4^{\text {th }}\) passes, values not underlined may be left blank \\
Similarly for \(5^{\text {th }}\) and \(6^{\text {th }}\) passes, follow through slips in previous passes Similarly for \(7^{\text {th }}\) and \(8^{\text {th }}\) passes, but cao (Dependent on both M marks) Reasonable attempt at Comp and Swap 143534 cao in figures \\
042423 cao in figures
\end{tabular} & [3] \\
\hline
\end{tabular}
\begin{tabular}{|c|l|l|l|l|}
\hline (v) & \begin{tabular}{l}
Shuttle sort uses 23 comparisons and 17 \\
swaps \\
Shuttle sort is more efficient \\
because \\
although it uses the same number of swaps \\
as bubble sort it uses fewer comparisons
\end{tabular} & A1 & \begin{tabular}{l}
Follow through their totals if possible \\
M1 \\
with totals seen (here) \\
Correct reason stated (comparisons and \\
swaps both compared, in words)
\end{tabular} & \begin{tabular}{l}
Choosing shuttle sort with a reason or
\end{tabular} \\
\hline \multicolumn{4}{|l|}{ Total \(=\)} & \(\mathbf{1 2}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 5 & (i) & Katie must spend at least 8 minutes preparing the first batch of cookies so she has at most 52 minutes of baking time. \(52 \div 12=4.3\), hence at most 4 batches & M1
A1 & Identifying why there is less than 60 minutes of baking time (or seeing 52) Explaining why 4 is the greatest possible number of batches & [2] \\
\hline & (ii) & The last batch takes 12 minutes to bake, so Katie has (at most) 48 minutes of preparation time
\[
\begin{aligned}
8 x+12 y+10 z \leq 48 \Rightarrow & 4 x+6 y+5 z \leq 24 \\
& \text { as given }
\end{aligned}
\] & B1
B1 & Explaining why total time for preparation cannot exceed 48 minutes
\[
8 x+12 y+10 z \leq 48 \text { seen or explicitly }
\] referred to & [2] \\
\hline & (iii) & Must be integer valued & B1 & Integers & [1] \\
\hline & (iv) & \begin{tabular}{l}
\[
P=5 x+4 y+3 z
\] \\
Assumes that she sells all the cookies (batches) that she makes
\end{tabular} & \[
\begin{aligned}
& \hline \text { B1 } \\
& \text { B1 }
\end{aligned}
\] & \begin{tabular}{l}
\(5 x+4 y+3 z\) or any positive multiple of this \\
Assumes she sells them all
\end{tabular} & [2] \\
\hline & (v) & \begin{tabular}{l}
 \\
Row \(1=\mathrm{R} 1+5 \times \mathrm{R} 2\) \\
Row \(2=\mathrm{R} 2 \div 1\) \\
Row \(3=\) R \(3-4 \times R 2\)
\[
x=4, y=0, z=0, P=20
\] \\
Katie should make 4 batches of plain cookies, and no chocolate chip or fruit cookies, to give a profit of \(£ 20\).
\end{tabular} & \begin{tabular}{l}
M1 \\
A1 \\
A1 \\
B1 \\
M1 \\
A1 \\
B1 \\
M1 \\
A1 \\
A1
\end{tabular} & \begin{tabular}{l}
Correct use of slack variable columns \\
Objective row correct (cao) \\
Constraint rows correct (cao) \\
Working need not be seen Correct pivot choice (row 2) (cao) \\
Follow through their tableau and pivot choice, if possible sca pivoting (\(x, t\) cols, \(P\) not decreased) Correct tableau (final column contains no negative values) \\
Showing valid method, may imply row 2 \\
Follow through their tableau, if reasonable (non-negative variables) \\
Reading off values from tableau (may be implied from answer) Interpretation: 4 batches of plain cookies (may imply none of others) \\
Interpretation: £20
\end{tabular} & [3]

[4] \\
\hline
\end{tabular}

\section*{4737 Decision Mathematics 2}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 1 & (i) & & \begin{tabular}{c}
State \\
\hline 0 \\
\hline 1 \\
\hline 2 \\
\hline 3 \\
\hline 0 \\
\hline 1 \\
\hline 2 \\
\hline 3 \\
\hline 0
\end{tabular} & \begin{tabular}{c}
Action \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
2 \\
0 \\
1 \\
2 \\
\hline 1 \\
2 \\
\hline 3 \\
1 \\
3 \\
0 \\
1 \\
2 \\
3
\end{tabular} & Working
10
11
14
15
\(\min (12,10)=10\)
\(\min (10,14)=10\)
\(\min (13,10)=10\)
\(\min (10,114=10\)
\(\min (11,14)=11\)
\(\min (9,11)=9\)
\(\min (10,14)=10\)
\(\min (7,15)=7\)
\(\min (8,11)=8\)
\(\min (12,15)=12\)
\(\min (15,10=10\)
\(\min (14,11)=11\)
\(\min (16,10)=10\)
\(\min (13,12)=12\) & & \begin{tabular}{l}
M1 \\
M1 \\
M1 \\
A1 \\
M1 \\
A1
\end{tabular} & \begin{tabular}{l}
Answered on insert \\
Transferring maximin values from stage 1 correctly Completing working column for stage 2 (method) \\
Calculating maximin values for stage 2 (method) \\
Maximin values correct for stage 2 (cao) \\
Transferring maximin values from stage 2 correctly \\
Working column for stage 3 correct (cao)
\end{tabular} & [6] \\
\hline & (ii) & \begin{tabular}{l}
Maxim \\
Maxim
\end{tabular} & \begin{tabular}{l}
value \\
route
\end{tabular} & \[
\begin{aligned}
& 12 \\
& (0 ; 0)
\end{aligned}
\] & 3) - (2; 3) - & & \begin{tabular}{l}
B1 \\
M1 \\
A1
\end{tabular} & \begin{tabular}{l}
12 (cao) \\
Route, or in reverse, follow through their table if possible, condone omission of \((0 ; 0)\) Correct route, including (\(0 ; 0\)) (cao)
\end{tabular} & [3] \\
\hline \multicolumn{9}{|r|}{Total \(=\)} & 9 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline 3 & (i) & \[
\begin{aligned}
& 4+3-2+8-2+7 \\
& =\mathbf{1 8} \text { litres per second }
\end{aligned}
\] & \[
\begin{aligned}
& \text { M1 } \\
& \text { A1 } \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
Answered on insert \\
Imply method mark from 18,20 or 22 \\
cao
\end{tabular} & [2] \\
\hline & (ii) & \begin{tabular}{l}
3 litres per second flow out of \(B(\operatorname{arc} B D)\) so only 2 litres per second can enter \(B\) from \(E\) and only 1 litre per second can enter \(B\) from \(S\). \\
At least 4 litres per second flow out of \(E\) to \(G, 2\) litres per second from \(E\) to \(B\) and 2 litres per second from \(E\) to \(H\), so 8 litres per second must flow into \(E\) from \(C\). \\
8 litres per second flows from \(C\) to \(E\) and at most 11 litres per second enters \(C\) from \(S\), so at most 3 litres per second flows from \(C\) to \(H\). Also, 2 litres per second flow from \(E\) to \(H\) so the most that can enter \(H\) is 5 litres per second. But at least 5 litres per second leave \(H\) along \(H T\), hence the flow in \(H T\) is 5 litres per second.
\end{tabular} & B1
B1

M1

A1 & \begin{tabular}{l}
At B: 3 out and \(1+2\) in \\
At \(E\) : (at least) \(4+2+2\) out \\
Considering \(C\) to show flow in CH is at most 3 Must explicitly refer to \(\leq 3\), or \(2 \leq\) flow \(\leq 3\), not just stating 3 \\
At \(H: 2+3\) in
\end{tabular} & [4] \\
\hline & (iii) & \begin{tabular}{l}
Flow augmenting route: \(\boldsymbol{S} \boldsymbol{A} \boldsymbol{D} \boldsymbol{F} \boldsymbol{T}\) or \(\boldsymbol{S} \boldsymbol{A} \boldsymbol{D} \boldsymbol{G} \boldsymbol{T}\) \\
Cut: \(X=\{S, B\}, Y=\{A, C, D, E, F, G, H, T\}\) \\
Or \(X=\{S, A, B\}, Y=\{C, D, E, F, G, H, T\}\)
\end{tabular} & \begin{tabular}{l}
M1 \\
A1 \\
B1 \\
B1
\end{tabular} & \begin{tabular}{l}
Substantially correct attempt (at least 12 correct) \\
(Not shown as excess capacities and potential backflows) \\
All correct (cao) \\
Either of these (correct) flow augmenting routes \\
Either of these (correct) cuts described in any way, or marked clearly on diagram
\end{tabular} & [4] \\
\hline & (iv) & \(B\) would have at most 3 litres per second entering it and at least 5 litres per second leaving. & \[
\begin{aligned}
& \hline \text { M1 } \\
& \text { A1 }
\end{aligned}
\] & Identifying that problem is at \(B\) A correct explanation & [2] \\
\hline \multicolumn{5}{|r|}{Total \(=\)} & 12 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 5 & (i) & \multicolumn{4}{|l|}{5
\[
\begin{aligned}
& (10-4) \div 2 \\
& =3
\end{aligned}
\]} & \begin{tabular}{l}
B1 \\
M1 \\
A1
\end{tabular} & \[
\begin{aligned}
& 5 \\
& 3 \text { or } 7 \\
& 3
\end{aligned}
\] & [3] \\
\hline & (ii) & \begin{tabular}{l}
\begin{tabular}{c}
\hline S \\
T \\
U \\
\hline col max
\end{tabular} \\
Play-safe f \\
Play-safe f \\
Not stable
\end{tabular} & \begin{tabular}{l}
\begin{tabular}{cc}
D & E \\
\hline 0 & 4 \\
-4 & 2 \\
2 & -6 \\
\hline 2 & 4
\end{tabular} \\
rugby club cricket club \\
cause \(-2 \neq\)
\end{tabular} & \[
\begin{gathered}
\hline \mathrm{F} \\
\hline-2 \\
-4 \\
0 \\
\hline 0 \\
\text { ows) } \\
\text { cols }
\end{gathered}
\] & \begin{tabular}{l}
\begin{tabular}{c}
row \(\min\) \\
\hline-2 \\
-4 \\
-6 \\
\hline
\end{tabular} \\
Sanjeev \\
Fiona
\end{tabular} & \begin{tabular}{l}
M1 \\
M1 \\
A1 \\
A1 \\
B1
\end{tabular} & \begin{tabular}{l}
Calculating row minima \\
Calculating col maxima (or equivalent) \\
Sanjeev or S (not just -2 or identifying row) \\
Fiona or F (not just 0 or identifying column) \\
Any correct explanation
\end{tabular} & [5] \\
\hline & (iii) & \multicolumn{4}{|l|}{Fiona Ursula} & \[
\begin{aligned}
& \text { B1 } \\
& \text { B1 } \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
Follow through their play-safe strategies if possible \\
F \\
U
\end{tabular} & [2] \\
\hline & (iv) & \multicolumn{4}{|l|}{\begin{tabular}{l}
Sanjeev's row dominates Tom's row \\
Doug \\
Fiona's column dominates Doug's (once Tom's row has been removed)
\end{tabular}} & B1 & \begin{tabular}{l}
This or any equivalent statement about Tom and Sanjeev (note: Tom is named in the question) \\
Doug \\
This or any equivalent statement about Doug and Fiona
\end{tabular} & [3] \\
\hline & (v) & \multicolumn{4}{|l|}{\[
\begin{aligned}
& E: 4 p-6(1-p)=10 p-6 \\
& F:-2 p \\
& 10 p-6=-2 p \\
& \square p=0.5
\end{aligned}
\]} & M1

A1 & Follow through their choice from part (iv) Both expressions seen in any form (note: \(D\) gives 2 \((1-p)=2-2 p\))
\[
p=0.5 \text { (cao) }
\] & [2] \\
\hline & (vi) & \multicolumn{4}{|l|}{\begin{tabular}{l}
Delete \(T\) row
\[
\begin{array}{rrr}
0 & 4 & -2 \\
2 & -6 & 0
\end{array}
\] \\
Multiply entries by -1 to show scores for Cricket club
\[
\begin{array}{ccc}
0 & -4 & 2 \\
-2 & 6 & 0
\end{array}
\] \\
Add 4 to make entries non-negative
\[
\begin{array}{rrr}
4 & 0 & 6 \\
2 & 10 & 4
\end{array}
\] \\
Choose Doug with probability \(x\), Euan with probability \(y\) and Fiona with probability \(z\). \\
If Sanjeev plays, expected score \(=4 x+6 z\) \\
If Ursula plays, expected score \(=2 x+10 y+4 z\)
\end{tabular}} & B1
B1
B1 & \begin{tabular}{l}
Delete \(T\) row and multiply entries by -1 \\
Add 4 to make entries non-negative \\
Identifying meaning of \(x, y, z\) or implied by reference to \(S\) for \(4 x+6 z\) and \(U\) for \(2 x+10 y+\) \(4 z\)
\end{tabular} & [3] \\
\hline & (vii) & \multicolumn{4}{|l|}{\begin{tabular}{l}
\(z=\frac{5}{6} \square\) maximum value for \(m=5\) \\
Hence, maximum value for \(M=1\)
\end{tabular}} & \begin{tabular}{l}
M1 \\
A1
\end{tabular} & & [2] \\
\hline & \multicolumn{7}{|r|}{Total \(=\)} & 20 \\
\hline
\end{tabular}

\section*{Grade Thresholds}

Advanced GCE Mathematics (3890-2, 7890-2) January 2009 Examination Series

Unit Threshold Marks
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|c|}{7892} & Maximum & A & B & C & D & E & U \\
\hline \multirow[b]{2}{*}{4721} & Raw & 72 & 57 & 50 & 43 & 37 & 31 & 0 \\
\hline & UMS & 100 & 80 & 70 & 60 & 50 & 40 & 0 \\
\hline \multirow[b]{2}{*}{4722} & Raw & 72 & 59 & 51 & 44 & 37 & 30 & 0 \\
\hline & UMS & 100 & 80 & 70 & 60 & 50 & 40 & 0 \\
\hline \multirow[b]{2}{*}{4723} & Raw & 72 & 55 & 48 & 41 & 34 & 28 & 0 \\
\hline & UMS & 100 & 80 & 70 & 60 & 50 & 40 & 0 \\
\hline \multirow[b]{2}{*}{4724} & Raw & 72 & 62 & 54 & 46 & 38 & 31 & 0 \\
\hline & UMS & 100 & 80 & 70 & 60 & 50 & 40 & 0 \\
\hline \multirow[b]{2}{*}{4725} & Raw & 72 & 57 & 49 & 41 & 34 & 27 & 0 \\
\hline & UMS & 100 & 80 & 70 & 60 & 50 & 40 & 0 \\
\hline \multirow[b]{2}{*}{4726} & Raw & 72 & 49 & 44 & 39 & 34 & 30 & 0 \\
\hline & UMS & 100 & 80 & 70 & 60 & 50 & 40 & 0 \\
\hline \multirow[t]{2}{*}{4727} & Raw & 72 & 54 & 47 & 40 & 33 & 27 & 0 \\
\hline & UMS & 100 & 80 & 70 & 60 & 50 & 40 & 0 \\
\hline \multirow[t]{2}{*}{4728} & Raw & 72 & 62 & 54 & 46 & 38 & 30 & 0 \\
\hline & UMS & 100 & 80 & 70 & 60 & 50 & 40 & 0 \\
\hline \multirow[t]{2}{*}{4729} & Raw & 72 & 61 & 51 & 41 & 31 & 21 & 0 \\
\hline & UMS & 100 & 80 & 70 & 60 & 50 & 40 & 0 \\
\hline \multirow[t]{2}{*}{4730} & Raw & 72 & 57 & 48 & 40 & 32 & 24 & 0 \\
\hline & UMS & 100 & 80 & 70 & 60 & 50 & 40 & 0 \\
\hline \multirow[b]{2}{*}{4732} & Raw & 72 & 58 & 50 & 43 & 36 & 29 & 0 \\
\hline & UMS & 100 & 80 & 70 & 60 & 50 & 40 & 0 \\
\hline \multirow[t]{2}{*}{4733} & Raw & 72 & 58 & 49 & 41 & 33 & 25 & 0 \\
\hline & UMS & 100 & 80 & 70 & 60 & 50 & 40 & 0 \\
\hline \multirow[t]{2}{*}{4734} & Raw & 72 & 50 & 43 & 37 & 31 & 25 & 0 \\
\hline & UMS & 100 & 80 & 70 & 60 & 50 & 40 & 0 \\
\hline \multirow[t]{2}{*}{4736} & Raw & 72 & 58 & 51 & 45 & 39 & 33 & 0 \\
\hline & UMS & 100 & 80 & 70 & 60 & 50 & 40 & 0 \\
\hline \multirow[t]{2}{*}{4737} & Raw & 72 & 60 & 53 & 46 & 39 & 33 & 0 \\
\hline & UMS & 100 & 80 & 70 & 60 & 50 & 40 & 0 \\
\hline
\end{tabular}

\section*{Specification Aggregation Results}

Overall threshold marks in UMS (ie after conversion of raw marks to uniform marks)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\cline { 2 - 8 } \multicolumn{1}{c|}{} & \begin{tabular}{c}
Maximum \\
Mark
\end{tabular} & A & B & C & D & E & U \\
\hline \(\mathbf{3 8 9 0}\) & 300 & 240 & 210 & 180 & 150 & 120 & 0 \\
\hline \(\mathbf{3 8 9 1}\) & 300 & 240 & 210 & 180 & 150 & 120 & 0 \\
\hline \(\mathbf{3 8 9 2}\) & 300 & 240 & 210 & 180 & 150 & 120 & 0 \\
\hline \(\mathbf{7 8 9 0}\) & 600 & 480 & 420 & 360 & 300 & 240 & 0 \\
\hline \(\mathbf{7 8 9 1}\) & 600 & 480 & 420 & 360 & 300 & 240 & 0 \\
\hline \(\mathbf{7 8 9 2}\) & 600 & 480 & 420 & 360 & 300 & 240 & 0 \\
\hline
\end{tabular}

The cumulative percentage of candidates awarded each grade was as follows:
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\cline { 2 - 8 } \multicolumn{1}{c|}{} & A & B & C & D & E & U & \begin{tabular}{c}
Total Number of \\
Candidates
\end{tabular} \\
\hline \(\mathbf{3 8 9 0}\) & 24.1 & 50.4 & 72.7 & 85.8 & 95.1 & 100 & 960 \\
\hline \(\mathbf{3 8 9 2}\) & 28.1 & 59.4 & 78.1 & 90.6 & 93.8 & 100 & 32 \\
\hline \(\mathbf{7 8 9 0}\) & 26.8 & 58.1 & 84.4 & 92.2 & 96.6 & 100 & 205 \\
\hline \(\mathbf{7 8 9 2}\) & 33.3 & 75.0 & 91.7 & 91.7 & 100 & 100 & 12 \\
\hline
\end{tabular}

For a description of how UMS marks are calculated see:
http://www.ocr.org.uk/learners/ums results.html
Statistics are correct at the time of publication.

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

\section*{www.ocr.org.uk}

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee
Registered in England

Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553```

